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EXECUTIVE SUMMARY

COSTS AND REVENUES ASSOCIATED WITH
OVERWEIGHT TRUCKS IN INDIANA

Introduction

In order to protect the investments made in highway pavements

and bridge infrastructure, the Indiana Department of

Transportation regulates trucking operations using legislation

and federal-recommended policies. Under certain circumstances,

special permits are granted to truck operators to allow excess over

the specified operational weight restrictions. As the steward of the

public highway infrastructure in Indiana, INDOT has a special

duty to ensure that operating policies are not unduly restrictive as

to discourage economic development but also realistic enough to

prevent premature and accelerated highway deterioration. With

the changing patterns of commercial vehicle movements over the

years, there is a need to continually review the costs and revenues

associated with overweight trucks, in terms of their pavement and

bridge damage costs and permit fees.

This study addressed the vital issue of pavement and bridge

damage cost estimation and analyzed these costs in terms of the

adequacy of permit revenues for highway pavements and bridges.

Analytical frameworks were developed for estimating the mar-

ginal damage cost on the basis of practical and realistic strategies

for pavement and bridge maintenance over their life cycles or

remaining lives. The study began with an extensive review of the

literature on the subject, thus facilitating identification of the gaps

in the existing practice and research. The framework, involves

development of asset families, establishment of realistic schedules

for reconstruction, rehabilitation, and maintenance, and projec-

tions of traffic volumes. Using the developed framework, the

marginal cost of damage was estimated for each asset family and

age group. Furthermore, the sensitivity of marginal asset damage

cost with respect to key policy and analysis variables was

explored. Finally, the study examined cost and operational issues

associated with the enforcement of overweight truck policies.

Findings

The literature review showed that very few studies in the past,

had adopted a truly comprehensive approach for asset damage

cost estimation on the basis of practical and realistic maintenance,

rehabilitation and reconstruction practices. Key gaps in existing

research include the use of data from limited sources that do not

adequately capture loading patterns across the different functional

classes, the impractical assumption of perpetual application of

only a single type of overlay applied at fixed intervals, inadequate

use of actual data on asset treatment cost and performance and

traffic volumes, failure to distinguish between strength-driven and

capacity-driven expenditure, lack of an analysis time frame of

sufficient length to accommodate realistic long-term expenditures,

traffic, and performance trends, and use of inappropriate road-use

measures. In developing a framework that addresses these gaps,

this study showed that the damage cost of highway assets due to

overweight trucks is influenced significantly by the asset type and

age, among other factors.

For pavement assets, the overall pavement damage cost

estimates were found to range from $0.006 per ESAL-mile on

Interstate highways to $0.218 per ESAL-mile on non-national

highways. The study also showed that non-consideration of

reconstruction or maintenance cost can result in underestimation

of the actual pavement damage cost by as much as 79% and 83%,

respectively. The analysis also showed that the unrealistic

approach of considering only rehabilitation treatments applied

at fixed intervals in asset life cycle, can lead to as much as 86%

underestimation of the actual pavement damage cost. The results

suggest that the pavement damage cost estimates are highly

sensitive to the pavement life cycle length, interest rate, rest period,

and the costs and service lives of rehabilitation treatments.

For bridge assets (classified by their superstructure material

types), the incremental methodology was found to be suitable for

the damage cost estimation. This methodology yields a damage

cost to each vehicle class on the basis of the axle configurations

and usage frequency (vehicle-miles travelled) in that vehicle class.

The bridge damage cost was estimated for two permit fee options

and three user-charging scenarios. An important result of the

study was the confirmation of the fact that bridge damage cost is a

function not only of gross vehicle weight but also of axle spacing

and axle loads. Also, it was shown that adopting a permit

structure on the basis of gross vehicle weight only will result in the

situation where certain vehicle classes underpay by as much as

92% of their actual damage contribution.

Finally, the study identified a number of locations that could be

considered for establishing new weigh stations and improving the

staffing. The study also made recommendations for enhancing the

efficiency of monitoring and inspecting the operating weights of

commercial vehicles in the state.

Implementation

This study can be used by a number of offices, program areas,

and units at INDOT to assess the consequences of truck weight

policies on the longevity of assets within their jurisdiction. These

include the Indiana Toll Road, Offices of Freight Mobility,

Economic Opportunity, and the Indiana Department of Revenue.

These offices have a stake in knowing the potential impact of any

changes on vehicle license fees and overweight truck permits on

the revenue generated from each of these fee structures, and the

impact of pavement damage in response to overweight policy

changes.

In summary, implementing the study product can assist the

state of Indiana in updating and streamlining its overweight

vehicle permitting process. The state will be in a better position to

monitor the impacts of the use of its highways by overweight

vehicles, make its permit fee structures more equitable, and

ultimately, strike a balance between the need to preserve its

investments in highway infrastructure and the need to help make

the state more competitive economically.
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GLOSSARY OF ACRONYMS AND TERMS

AADT: Average Annual Daily Traffic.
ESAL: Equivalent Single Axle Load.
Highway Costs Allocation (HCA): The assignment of the amounts expended on highway construction,

reconstruction, rehabilitation, and maintenance, including capacity-driven and strength-driven expenditure to
highway users.

ISP: Indiana State Police
Marginal Pavement Damage Cost (MPDC) Estimation: The incremental cost of pavement damage repair due to the

addition of one extra unit of usage (such as 1 ESAL-mile or VMT).
MCSD: Motor Carrier Services Division.
MR&R: Maintenance, rehabilitation, and reconstruction.
MR&R Strategy/Schedule/Activity Profile: The set of pavement or bridge treatments from construction to infinity.

This involves a partial cycle and a number of full cycles to perpetuity. This definition is specific to this report.
Life-cycle Activity Profile: The set of pavement or bridge treatments between periods of reconstruction.
Load Equivalency Factor (LEF) or ESAL Factor: Is the ratio of the damaging effect of a non-standard axle to that of

a standard axle load, in other words, LEF is the equivalent number of ESALs for a certain combination of weight
and axle.

Pavement Damage Cost (PDC) Estimation: The development of the unit cost of highway facility damage repair due
to usage. This is based on the equating the frequency and intensity of usage of the facility cost on one hand, to the
costs of repairing the damage inflicted on the facility due to the usage on the other hand. The repair costs include
the rehabilitation and maintenance costs as well as the cost of reconstruction due to the damage.

NAPCOM: National Pavement Cost Model
OW: Overweight (vehicle)
Road-use Measure: A parameter that shows the extent to which a facility is used. This serves as the basis for

reporting the cost of pavement damage repair, for example, $/vehicle-mile and $/load-mile.
SRI: Smart Roadside Initiative.
VMT: Vehicle miles of travel.



PART I. INTRODUCTORY INFORMATION

1. INTRODUCTION

1.1 Background Information

The Indiana Department of Transportation (INDOT),
tasked with the stewardship of billions of dollars’ worth
of publicly invested highway infrastructure in the state
of Indiana, continually seeks policies that prevent
accelerated deterioration of its assets through excess
loading and other factors. Consistent with this objective,
INDOT desires to have knowledge of the infrastructure
damage caused by overweight vehicles to (i) ascertain
the true costs of overweight vehicle operations in terms
of pavement and bridge damage repair and (ii) serve as a
basis for updating the existing overweight permit fees.
Specifically, such knowledge would enable the agency to
design the most efficient and effective permitting
structure from various perspectives including axle- or
gross weight-based permitting and permit coverage
types (annual vs. single trip).

It is important for INDOT to continue to monitor
overweight vehicles because such vehicles not only
inflict great damage to highway pavement and bridge
infrastructure (thus reducing their longevity) but also
often constitute a safety hazard to other motor operators,
pedestrians, and the general public. Overweight vehicles
cause undue stress on critical components of the vehicle
drivetrain including brakes, transmission, steering, and
suspension, often leading to early failure of components;
sudden failure of these components could cause a serious
crash. This study focuses on the pavement and bridge
damage costs only and excludes the safety and congestion
consequences of overweight vehicle operations.

In the past few decades, INDOT and the USDOT
have carried out or sponsored research that examined,
directly or indirectly, the issue of overweight vehicle
operations, their impacts on highway infrastructure
condition or longevity, and the user permit fees to cover
such damage. In 1984, INDOT commissioned a cost
allocation study (1) to restructure the user charges that
existed at the time. In 1988, the 1984 study was updated
to provide information for a fuel tax rate change (2).
Also, a 2000 US DOT study (3) presented data that
could be used by the states to assess the increase in
pavement costs for every ton increase in payload or the
decrease in pavement costs for every increase in the
number of axles, for any given truck class. A recent
SPR study (4) in Indiana that synthesized overweight
vehicle permitting practices, including permit fee
schedules and amounts, across the Midwest states in
relation to the practice in Indiana, further accentuated
the need for a study in Indiana to investigate the costs
of pavement and bridge damage for purposes of
updating the state’s heavy truck permitting free
structures. From that study, a research need was
identified to (i) investigate how to relate permit fees
to infrastructure damage in terms of axle weight and
gross vehicle weight; (ii) identify all costs related to the

use of overweight trucks in Indiana; (iii) estimate all
revenues from the overweight truck permitting pro-
cess; (iv) establish an equitable permit fee structure
by each heavy vehicle class on the basis of axle
weights instead of, or at least in addition to gross
vehicle weight.

1.2 The State of Truck Permitting Practice in Indiana

Indiana’s roads and highways were constructed to
accommodate vehicles of certain attributes (dimensions
and weights). For any vehicle whose attributes exceed
those established by law, a permit is required. The
permitting process in Indiana DOR’s overweight
permitting handbook also helps ensure that appropriate
routes and bridges are used, and enforces the required
safety procedures. Also, the permit fee is a way to hold
the extra-legal vehicle operators responsible, in a mostly
aggregate fashion, for the damage caused by overweight
vehicles to the highway bridges and pavements and also
for the safety risks posed by oversize vehicles. By
imposing such fees, not only is excessive use of
overweight/oversize vehicles regulated but also revenue
is generated to repair any damage caused by these
vehicles and also to upgrade these infrastructure to
standards that can better withstand and support such
extra-legal operations. In this manner, the investments
made in the highway infrastructure and the safety of
Indiana motorists, are better safeguarded. Fees col-
lected for the permits are distributed to the State
Highway Fund which enables financing of state and
local road improvements, maintenance and policing.

An overweight vehicle is generally any vehicle whose
overall weight exceeds 80,000 pounds. However, road
and bridge stress levels are determined by the distribu-
tion of the weight, so it is also important that the weight
per axle or sets of tandem axles (or in some cases, weight
per tire) is also monitored. The total gross weight for a
permit applicant is calculated using federal bridge
formula and then compared with the established weight
limits. See Oversize-Overweight Vehicle Permitting
Handbook, Motor Carrier Services Division (MCSD),
Indiana Department of Revenue, Indianapolis (5), for
details of the federal formula and federal tables. The
acronym OSW or OS/OW represents oversize and/or
overweight vehicles. In extreme cases, permits may be
sought for a ‘‘superload’’ (a load that exceeds certain
threshold dimensions and/or threshold weight (in
Indiana, the thresholds are 15 ft height, 16 ft width,
and 110 ft length; and 120,000 lbs, respectively), or a
load that fails the overload analysis.

In seeking a permit for a vehicle that violates legal
load levels, the applicant first confirms that their load is
not divisible. Definition of nondivisible loads are stated
in 23 Code of Federal Regulations 658.5 (5). There is
one exception to the rule of nondivisible loads: for the
Indiana-designated ‘‘extra heavy-duty highways’’ in
northern Indiana, applicants may haul divisible loads
with a total gross weight of up to 134,000 pounds,
subject to legal axle weights with a special permit
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commonly known as a ‘‘Michigan Train Permit’’. In
Indiana, weights between 80,000 lbs and 120, 000 lbs
are simply described as ‘‘overweight’’; those over
120,000 lbs are considered as superloads (6).

Permits for overweight vehicles are provided through
the consolidated efforts of the Indiana Department of
Transportation and the Indiana Department of
Revenue. The Department of Transportation maintains
and safeguards Indiana highways and evaluates parti-
cular road conditions and passability. Permits are
issued after it has been ascertained that road traffic
will not be severely affected and the highway and
bridges will not be seriously damaged. The Department
of Revenue ensures that the proper permits are issued
and the fees paid. In Indiana, there are a number of
exemptions from overweight permits (see Part V of this
report). The lists of permit types and fees are provided
in Part V.

In Indiana, options for obtaining a permit are the
Internet, permitting service, fax, mail, and walk in.
Details for each option are provided in Part V. For
trucking organizations new to Indiana, the permit
applicant visits the Motor Carrier Services page of the
Indiana Department of Revenue website to set up an
OSW account by clicking the link: ‘‘New to Indiana?
Apply for an OSW Account.’’ The applicant enters
basic information, account information, USDOT num-
bers, and address and contact information. For pre-
approval, INDOR has in place a process that facilitates
the process of superload permit approvals for the
benefit of applicants who face time constraints.
Indiana’s current permitting system allows the appli-
cant to have the INDOT engineering analysis done
ahead of time, well before the time that the permit is
needed, and the applicant receives a superload pre-
approval number. With this pre-approval number, the
applicant (for the next 30 days) can obtain the trip
permits using the same vehicle configuration and route
without any additional INDOT analysis or delays.
‘‘Superload’’ permits are issued if the load exceeds the
threshold dimensions (15 ft height, 16 ft width, and 110
ft length) and/or weight threshold (120,000 lbs).

Any load that fails the overload analysis or is over
200,000 lbs is reviewed by an INDOT engineer, and this
typically requires additional processing time. INDOR’s
form M-233ST, which lists the allowable weights and
axle characteristics for a special-weight single-trip
application, is presented in Part V of this report.
Also, INDOR has established a list of the 22 extra
heavy duty highway routes in Indiana.

1.3 Overview of Past Studies Related to Highway
Damage Cost Estimation

To ensure the equity of existing or proposed
structures for highway user fees, studies on pavement
or bridge damage cost estimation and also on highway
cost allocation compare the cost responsibility and the
revenue contributed by each vehicle class. The common
objective across these studies is to narrow the gap

between costs occasioned and actual revenues paid by
each vehicle class. The last major cost allocation study
at the federal level was carried out in 1997 (7) which
was subsequently updated by an addendum in 2000 (8).
The concept of equity, which is the fair sharing of costs
in proportion to the revenues (9), is consistent with the
decomposition of damage repair costs into attributable
costs (these are caused by traffic loading and thus are
allocated to the different vehicle classes) and non-
attributable costs (these are the so-called ‘‘common
costs’’, which are caused by climate, aging and other
non-load factors.

Most highway cost allocation studies (HCAS) use an
incremental method. In this methodology, the cost of
facility construction and maintenance for the lightest
vehicle class, termed the ‘‘base cost’’, is determined as
the first step. All vehicle classes are responsible for their
appropriate share of this base cost. Next, the facility is
enhanced (stronger bridges and thicker pavements) to
accommodate heavier vehicles and the cost of the design
increment (facility enhancement) is shared among the
heavier vehicle classes only. Such an incremental approach
could have limitations because it gives undue advantage to
heavy vehicles (that is, it assigns to heavy vehicles,
relatively lower costs than their actual cost responsibilities)
due to economies of scale; in other words, this approach
inherently suggests that for heavy vehicles (higher loads), a
unit increase in load is less deleterious compared to the
effect of a unit increase in load for smaller vehicles (lower
loads) (10). In the nineties, enhanced highway cost-
allocation techniques were developed to take cognizance
of new research findings in pavement deterioration and
investment evaluation (10,11). The national pavement
cost model (NAPCOM), which was adopted for the
federal HCAS of 1997, used a ‘‘cost occasioned
approach’’ where each user class pays for road use
according to the extent of system use. However, unlike
previous studies, the NAPCOM study also considered
marginal social costs such as air pollution, noise,
congestion, and crash costs (7,11).

With continuing advancements in pavement and
bridge deterioration research, greater opportunities
exist for a clearer understanding of the relative share
of damage by different vehicle classes and the equitable
restructuring of permit fees (vis-à-vis existing fees).
These advancements include those in the areas of
pavement and bridge deterioration modeling, the
evaluation of the life-cycle costing and longevity
benefits of pavement and bridge rehabilitation and
maintenance treatments, and mechanistic analysis of
the behavioral response of bridge and pavement
components to load and non-load stresses.
Specifically, in Indiana, the development of the state’s
bridge and pavement management systems as well as
the traffic monitoring program, have made available
rich data on the initial and life-cycle costs and
effectiveness of various standard treatments, the
performance of the highway facilities by functional
class, and the facility demand (usage) and loading
intensities by vehicle class and weight groups. The
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present study takes advantage of the current availability
of such data in Indiana to carry out a comprehensive
damage cost estimation analysis that is based on
realistic and practical rehabilitation and maintenance
practices at INDOT.

1.4 Study Objectives and Scope

The primary objective of this research is to investi-
gate how to relate highway use fees to infrastructure
damage and other costs related to overweight truck
operations in Indiana. The investigation is expected to
yield an updated and more detailed methodology for
attributing the costs of pavement and bridge repair as
well as enforcement and other costs occasioned by each
vehicle class. Other objectives are to provide guidelines
for INDOT to establish a balanced fee structure that
would not discourage economic development and yet
ensure that all heavy vehicles pay their fair share of
costs; and to investigate the pros and cons of INDOT
establishing permit fees on the basis of axle weights as
opposed to gross vehicle weights.

Consistent with the above study objectives, the scope
of the study was to identify all costs and revenues
related to overweight vehicle operations in Indiana.
From the cost source perspective, the study scope
includes infrastructure type preservation activity costs,
and enforcements costs. From the activity type
perspective, the scope includes reconstruction, rehabi-
litation, and maintenance. From the highway facility
type perspective, the scope includes pavements and
bridges only. The study scope also includes a compar-
ison of the costs and revenues by vehicle weight class.

1.5 Overview of the Study Methodology

In order to establish the unit costs of pavement or
pavement damage, there were two key aspects of the
study: one addressed the cost of providing the facility and
the other addressed the extent of usage over the facility
life cycle. A synthesis of these two aspects yielded the
cost per usage in other words, the unit costs of facility
use. To do this, data on pavement reconstruction,
rehabilitation, and maintenance costs were collected and
analyzed, and cost vs. usage models were developed. For
enforcement and other costs, the report includes
personnel costs and other costs incurred by the
Indiana State Police (ISP) associated with enforcement
of the overweight permitting process involving weighing
and escorting tasks. The adequacy of revenue collected
under the current permitting structure was carried out
not for the entire highway system but for individual
vehicle classes and weight groups: to do this, the existing
permit fee (unit revenue) on one hand was compared to
the actual cost of pavement or bridge damage estimated
by the study on the other hand. The report also provided
a conceptual discussion of the pros and cons of basing
fees on axle weights and gross vehicle weights and also
of the consequences of annual (blanket) vis-à-vis single-
trip permitting structures.

1.6 Contents of this Report

Part I of this report discusses the study background,
objectives and scope. Parts II, III, and IV address the
costs and revenues associated with pavement and
bridges, and the costs of enforcement that are
associated with overweight vehicle uses in Indiana.
Part V briefly addresses overall revenue analysis and
permitting issues for purposes of revenue generation.
Part VI summarizes the study methodology and
findings, and highlights the study contribution to the
research literature on the subject.

PART II. PAVEMENT DAMAGE COSTS

2. INTRODUCTION

2.1 Background

Hundreds of billions of dollars are needed annually
for preserving U.S. highway pavements (12). As such,
highway agencies in the U.S. continually seek policies
that yield adequate revenue and prevent undue dete-
rioration of the highway pavements. Pavement damage
is accelerated mostly due to factors related to the
pavement material type, age, climatic severity, and
traffic loading. For pavements, traffic loading (particu-
larly by heavy vehicles such as trucks with at least five
axles) contributes the most damage and therefore is the
key factor in design procedures for that asset (13–15). In
recognition of this fact, highway agencies seek reliable
knowledge about the portion of the damage caused to
the pavement by heavy vehicles, which can serve as a
basis for establishing an efficient and equitable road
user charging system. The results of past studies suggest
that the current road user charging systems do not
recover the full cost occasioned by different vehicles
and/or that most heavy vehicles are paying less than
their equitable share on many highways, and thus are
being subsidized by light vehicles (16–20).

2.2 Problem Statement

For pavement damage cost (PDC) estimation, two
approaches have been used in the past studies: the so-
called empirical and engineering approaches. The
empirical approach hinges on the establishment of a
statistical relationship between the usage (or road-use)
of the pavement (in terms of vehicle miles traveled or
load-miles, for example) on one hand, and the costs of
pavement maintenance, rehabilitation and reconstruc-
tion (MR&R) on the other hand. This is then followed
by finding the derivative of the estimated cost function
with respect to the road-use variable to yield the
marginal pavement damage cost (MPDC). The ‘‘engi-
neering’’ approach is based on the derivation of
theoretical relationships between road-use (for exam-
ple, traffic loading) on one hand and pavement damage
on the other hand, and then translating such damage to
cost using damage-cost relationships.
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In past studies that used these approaches, the
pavement reconstruction costs were not considered as
a cost item as only maintenance and rehabilitation costs
were analyzed. Also, in studies that used the empirical
approach, the temporal inconsistencies between the
time-span of the traffic data and that of the MR&R
cost data appear not to have been adequately
addressed. Also, in most studies that used the
engineering approach, only rehabilitation activities
were considered while reconstruction, periodic, and
routine maintenance activities were generally not
included in the analysis. Other problems associated
with the methodologies used in several existing studies
include the collection of traffic data from only one or
few weigh-in-motion sites thus precluding the acquisi-
tion of truly representative distribution of traffic
classification and loads. Further, most studies have
utilized MR&R schedules that do not adequately reflect
the true practices of highway agencies, for example,
some studies have used only a single rehabilitation type
applied at regular intervals of about 10–15 years.

To improve the methods used in pavement damage
cost estimation, it is important to overcome these
limitations. First, in studies of this nature, it is critical
that the traffic and MR&R data span same time period.
Also, the time period should be adequate, for example,
15–20 years span of data, rather than just a couple of
years. In other words, an appropriate time span for the
analysis must be established so that long-term expen-
diture, traffic, and performance trends can be estab-
lished with minimal bias.

Secondly, the methodology should accommodate not
a single pavement segment or a single type (surface type
and functional class) of pavements but rather for each
distinct family of an entire network in a region of
interest.

Thirdly, for the purposes of damage cost estimation,
it is important to establish a pragmatic schedule of
MR&R activities (and hence obtain a reliable repre-
sentation of amounts expended on such preservation
actions), so that realistic costs can be attributed to the
users. At most agencies, actual MR&R practice is
characterized by the application of different treatments
and this is done not for a single pavement type but for
each family of pavements (grouped on the basis of
functional class, pavement surface type, among other
attributes). In this respect, there is a need to incorporate
all the appropriate treatment categories of pavement
damage repair, not just one or a select few. In other
words, the entire gamut of treatments spanning routine
and periodic maintenance, rehabilitation, and recon-
struction must be considered as appropriate and as
reflective of the actual agency practices.

Related to the above consideration is the issue of
strength- and capacity-driven expenditure. The analysis
should necessarily exclude capacity-driven expenditure
such as lane-widening projects and must not include the
costs of such work in the cost aspect of the equation.
Only strength-driven expenditures must be considered
because the problem statement is related to the cost of

pavement damage. Also, for strength driven expendi-
tures, the shares of load and non-load damage (and
therefore, expenditure) must be established, so that
load-related costs may be fairly assigned to the facility
users.

Fifth, an appropriate road-use measure should be
selected that is consistent with the objective of analysis
(in this case, pavement damage). For stated or
ostensible reasons that often include lack of data,
several studies have used road-use measures that make
it difficult to establish a fair and equitable cost of
pavement damage and consequently, fee. For example,
a pavement damage cost in dollars per vehicle per mile
does not account for vehicle load. Nor does one
expressed as dollar per vehicle weight per mile as it
does not account for the damaging effect of axles.
Related to this is the issue that an appropriate exponent
for the load equivalency factor (LEF) must be
determined on the basis of the agency-specified
performance indicator and threshold values for each
family of pavements under consideration: to avoid the
unduly restrictive assumption of past studies that the
fourth-power law is valid, there is a need examine the
sensitivity of pavement damage costs estimates with
respect to differences in the LEF ratio.

2.3 Study Objective

On the basis of the problem statement discussed in the
previous section, there is a need for highway agencies
such as INDOT to establish appropriate unit costs of
pavement damage and thus to establish a foundation
upon which existing permit fees for overweight vehicles
could be reviewed. As such, the primary objective of the
study this study developed and implemented a metho-
dology to address the following objectives:

N To provide a comprehensive overview of the various

approaches used in the past for highway PDC estima-
tion.

N To develop and demonstrate a practical framework for
damage cost estimation by incorporating realistic high-
way agency maintenance, rehabilitation and reconstruc-
tion practices.

N To quantify the influence of pavement age on the amount
and cost of pavement damage per unit load.

The entire framework is based on the concept of
marginal pavement damage cost (MPDC), defined as
the increase in agency MR&R expenditure due to
addition of one more road-use variable.

2.4 Overview of Study Approach

A general outline of the pavement part of the study is
presented as Figure 2.1. First, a comprehensive litera-
ture review was conducted on PDC estimation, MR&R
strategy formulation, and highway agencies MR&R
practices. Next, pavement families, pavement rest
period and treatment service life, formulation of
MR&R strategies (using pavement life-cycle M&R
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profile) were carried out, followed by the development
of cost functions and MPDC estimates. This was done
for each highway functional class. The impact of non-
consideration of certain cost categories on PDC
estimates was investigated. In addition, the study
investigated the consequences of non-consideration of
non-truck traffic in the analysis, and examined the
impacts of deviations from the established relationship
between pavement loading and deterioration (i.e., the
fourth-power law). Variations of the MPDC with
respect to key policy and analysis variables (i.e., the
length of the pavement life cycle, the interest rate, the
effectiveness of the MR&R treatments, and the
reconstruction and rehabilitation costs) were explained.
A number of issues and problems areas associated with
direct use of field data for MPDC estimation were
discussed. This study also quantifies the variation of
MPDC estimation across roadway segments.

2.5 Organization of Part II of This Report

This part (Part I) of the report is organized into six
chapters. Chapter 2 discusses need for reliable estima-
tion of MPDC, the study objectives, and the study

approach. Chapter 3 presents a summary of the
literature review on MPDC estimation and the impacts
of the evolution of pavement designs on MPDC
estimation reliability. Chapter 4 presents the highway
pavement MR&R strategies that were formulated for
the study and the research methodology. Chapter 5
describes the estimation of MPDC using the developed
methodology. Also, this chapter discusses the impact of
pavement age, the impact of not including the
reconstruction/maintenance cost, and the variation in
MPDC when the fourth-power law is invalid. Chapter 6
describes the sensitivity analysis of MPDC with respect
to the length of the pavement life cycle, the interest rate,
the effectiveness of MR&R treatments, and the
reconstruction and rehabilitation costs. Lastly, the
research summary, conclusions, and recommendations
for future work are presented in Chapter 7.

3. LITERATURE REVIEW

3.1 Introduction

To assess the adequacy and/or inequity of highway
permit and license fees to cover pavement damage, a

Figure 2.1 An overview of the study approach for pavement damage cost estimation.
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number of studies have been carried out in the U.S. and
abroad. The goal of these studies was to design suitable
fee structures so that vehicles pay their fair share of
highway use. Often, this has been done as part of
broader studies on cost allocation. A major, common
component of these past studies was the estimation of
the costs of highway upkeep (maintenance, rehabilita-
tion, and reconstruction) and the allocation of these
costs to users through different vehicle classes in a
manner that is commensurate with their respective
pavement damage contributions. This procedure was
followed by a comparison of the resulting cost
responsibility estimates to the existing user fees, for
each vehicle class. The calculated difference (or gap)
between the estimated and actual costs represents the
equity (or lack thereof) of the existing user fee. Some of
the past studies went further to make recommendations
geared towards narrowing the gap. In the U.S., the
most recent major study at the national level was
conducted in 1997 (17) which was subsequently updated
in a 2000 addendum (18).

As will be seen in subsequent sections of this chapter,
the estimation of a consistent unit cost of pavement
damage has remained largely unresolved (and even
controversial) in spite of significant and earnest past
research efforts spanning several decades. Fortunately,
with the continuing maturity of pavement management
systems at several state highway agencies and with
ongoing advancements in pavement deterioration
research, there is a new dawn of unprecedented
opportunities for a more lucid understanding and
reliable quantification of the actual damage inflicted
by different vehicle classes on pavements. This will help
pave the way for a resolution to the larger user charging
challenge by facilitating the development of more
efficient and more equitable fee structure. Resolving
the problem could also help agencies to establish

policies that encourage the use of more appropriate
axle load distribution that inflicts lower damage to the
pavement.

3.2 Major Research Directions for PDC Estimation

There exist at least two categories of studies that
have addressed the issue of pavement damage cost. The
first category, highway cost allocation (HCA) studies,
were not aimed at pavement damage cost estimation
but needed to carry out such analysis in order to
allocate all costs of pavement provision and upkeep. As
such highway cost allocation studies included projects
geared towards highway capacity expansion as well as
pavement strengthening. The second category of studies
specifically addressed the cost of pavement damage as
their final end product. For purposes of this report, we
herein refer to such studies as pavement damage cost
(PDC) studies.

For HCA and PDC estimation studies, a number of
methods/approaches have been used in past studies.
The prominent methods/approaches used for HCA
and PDC estimation are shown in Figure 3.1, and a
discussion of these methods/approaches follows in the
ensuing paragraphs.

3.3 Highway Cost Allocation (HCA) Studies and
Methodologies

Simply put, HCA is the assignment of specific fees to
each user class of a highway system. Traditionally,
HCA studies are based on the principle of equity. In the
literature, the terms ‘‘Cost Allocation Approach’’
(17,18,21) and ‘‘Club and Equity Approach’’ (22) have
been used to describe such studies. The primary
objective of HCA studies is to evaluate the equity and
efficiency of federal highway user charges based on the

Figure 3.1 Contexts for PDC estimation.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/016



costs assigned to different vehicle classes (17). Equity
can be defined as the fair sharing of cost in proportion
to either the benefits accrued or to the cost occasioned
by each vehicle class. A key aspect of equity is the
consideration of attributable pavement repair costs
(which vary across vehicle classes due to their weight)
and non-attributable costs (common costs that are due
to climate, weather, aging, application of deicing salt,
and other factors not related to vehicle loading) (23).
HCA involves a detailed comparison of the actual user
fees paid and the equity-based cost responsibility
(17,24,25).

For most studies that estimated the cost of pavement
damage, the study context was to allocate cost, in other
words, to assign highway repair costs to various classes
of highway users. A brief introduction to the cost
allocation approach is herein presented to highlight the
major contextual differences between HCA and PDC
studies.

From the asset type perspective, highways consist of
more than pavement: they include bridges, safety assets,
mobility assets, etc. Thus, highway cost transcends
pavements costs alone; even for pavements, not all
investments are meant to solely address damage: some
investments are to increase highway capacity by adding
more lanes of pavement. As such, HCA studies
consider the cost of capacity addition ((re)construction,
major widening, etc.), system enhancement (safety,
management, ITS projects etc.), and system preserva-
tion. For pavements, the cost categories include: new
construction, major widening, reconstruction with lane
addition, minor widening and maintenance, and
rehabilitation (17). Within these cost categories are
sub-categories; for example, in a 1984 Indiana HCA
study, the rehabilitation cost subcategories included:
pavement and shoulder, right-of-way, grading and
earthwork, and drainage and erosion control.
Similarly, different cost allocators are used to allocate
the estimated cost within individual cost categories.

The methods used in past HCA studies can be
categorized as follows: traditional incremental (21),
thickness incremental (23,26), performance-based
methodology (28), facility consumption (21), individual
distress models (18,21,29), and game theory (30). The
major HCA studies are summarized in Part II
Appendix A, and the underlying methods used in these
studies are discussed in the ensuing paragraphs.

3.3.1 Incremental Method

Until 1982, most of the HCA studies in the U.S.
(including the first federal HCA study of 1962) used the
‘‘incremental method’’ (31). Pavement construction cost
was the major cost element for HCA studies carried out
in the 1960s and 1970s because at that time the
pavement maintenance cost constituted only a small
part of overall highway expenditures. In early HCA
studies, costs were allocated either on the basis of
vehicle-miles travelled (VMT) or the traditional incre-
mental method (28,31). In the traditional incremental

method, the first step is to determine the cost of facility
construction and maintenance for the lightest vehicle
class, referred to as the ‘‘base cost,’’ The base cost is
shared by all vehicles in proportion to their facility use
(i.e., number of miles travelled). The next step is to
increase the pavement thickness one inch at a time to
accommodate heavier vehicles (trucks) and hence the
cost of these subsequent thickness increments is
assigned to the heavier vehicle classes. These are termed
as the ‘‘incremental cost’’ (26,29).

Therefore, the traditional incremental approach,
instead of applying random loadings to the pavement
structure, adds vehicle classes sequentially from the
lightest to the heaviest. Thus, those vehicle classes that
are added at the last increment seem to pay the least
share of pavement cost. This approach has been widely
criticized as heavy vehicles enjoy the benefits of the
economies of scale and results in unfair cost allocation.
Generally, a greater thickness of pavement is designed
to accommodate higher traffic loads; however, the
relationship between traffic load and pavement thick-
ness is non-linear (26); in other words, a 100% increase
in traffic load requires less than a 100% increase in
pavement thickness. Such scale economy in pavement
design is illustrated in Figure 3.2 where a plot of the
pavement thickness vs. the traffic load shows the curve
flattening out at the higher loads. As shown in the
figure, the first unit thickness DT accommodates a
small increase in load (DL)1 while the last unit thickness
which is the top most unit thickness of pavement,
accommodates a much higher load (DL)2. This clearly
shows a wide gap between the added ability of
pavements to withstand loads for the initial and final
thickness increments. These two increments have
almost the same cost but differ on the extent to which
they enhance the load-carrying capacity. Therefore, the
incremental method of cost allocation and similar other
methods that distribute the cost of additional pavement
thickness to accommodate additional loads, are not
equitable as they yield fee structures that make lighter
vehicles bear an unfair burden of the cost.

3.3.2 The Facility Consumption Method

Realizing the limitations of the incremental method,
efforts were made in the late 1970s to improve the
allocation of pavement costs. The facility consumption
method is a set of cost allocation procedures developed
during the 1982 federal HCA study. In this method, the
cost of new pavement construction is allocated on the
basis of a uniform removal technique instead of the
incremental method, whereby a base facility cost is
established and allocated to all vehicle classes on the
basis of VMT. The enhanced facility cost was allocated
by using a reverse incremental approach or uniform
traffic removal technique. The traffic loading is reduced
gradually by removing vehicle classes systematically
until any further reduction would result in a pavement
structure thinner than the minimum pavement thick-
ness or base facility. For each vehicle class removed, the
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resulting cost saving was assigned to the vehicle class
under consideration on the basis of its Equivalent
Single Axle Load (ESAL) contribution.

3.3.3 Individual Distress Models

In this method, mathematical models are developed
for the individual distresses that are considered to
reflect of pavement deterioration and thus lead to
highway rehabilitation decisions. The cost responsibil-
ity is then established by identifying the individual
vehicle class responsible for a particular distress and the
relative importance of that distress in the decision to
rehabilitate a given pavement segment. This method
was used in the 1982 federal HCA study for allocating
the cost of pavement rehabilitation treatments.

Improvements to the facility consumption and
individual distress models for PDC estimation contin-
ued during the 1980s and 1990s. The mechanistic
pavement distress models developed for the 1982
federal HCA study were based on a small number of
hypothetical pavement sections (17). The original
models were improved using data on actual pavement
sections in the Highway Performance Monitoring
System (HPMS) database. Also, in addition to the
models used in the 1982 federal HCA study, some new
models for both flexible and rigid pavements were
developed which resulted in the National Pavement
Cost Model (NAPCOM). NAPCOM uses individual
distress model for flexible and rigid pavement. For
flexible pavements, NAPCOM has individual distress
models for traffic-related Present Serviceability Rating
(PSR) loss, expansive-clay-related PSR loss, fatigue
cracking, thermal cracking, rutting, and loss of skid
resistance; for rigid pavements, the distress models
includes traffic-related PSR loss, faulting, loss of skid
resistance, fatigue cracking, spalling, and soil-induced
swelling and depression. The details of the NAPCOM
model are presented in Part II Appendix A.

3.3.4 Performance-based Methodology

In 1984, the Indiana Department of Transportation
(INDOT) conducted a cost allocation study to deter-
mine the cost responsibility of different vehicle classes
for highway use (28). Recognizing that the 1982 federal
HCA study did not explicitly consider the effect of
maintenance or the interaction of different distresses,
the authors of the INDOT study (28) proposed an
aggregate damage model that related pavement perfor-
mance to maintenance, thus facilitating the allocation
of rehabilitation and routine maintenance costs. The
concept of PSI-ESAL loss represented the aggregate
pavement damage due to loading under given levels of
maintenance, including zero maintenance. Further
details of this methodology are discussed in Part II
Appendix A.

3.4 PDC Estimation Studies

Besides HCA, the most common purpose for
estimating the damage attributable to each vehicle class
in past studies, was to estimate the unit cost of
pavement damage by highway users, and thus establish
a suitable fee to recoup these costs. Unlike HCA studies
that typically cover a wide scope of costs including
vehicle operating cost (VOC), pavement MR&R cost,
congestion cost, accident cost, and environmental cost,
PDC estimation studies only consider pavement
MR&R cost; this is the focus of the present study.
Specifically, PDC estimation studies, only consider
those costs that are associated directly with the
pavement structure, such as M&R costs (both periodic
and routine), and excludes (i) cost incurred outside the
pavement structure such as right-of-way cost, grading
and earthwork cost, and drainage and erosion control
costs, (ii) work on non-pavement assets, and (iii) non-
strength pavement work such as lane addition.

PDC estimation studies seek to (i) estimate the
average PDC for full cost recovery of the pavement

Figure 3.2 Illustration of scale economies of pavement thickness w.r.t loading.
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‘‘consumed’’ by different vehicle classes or (ii) the
marginal PDC so that vehicles can be charged on the
basis of the incremental cost they incur to the
pavement. The average cost is the total MR&R cost
divided by the total usage (e.g., number of vehicles)
while marginal PDC is the MR&R cost of an additional
vehicle on a given highway. To determine the MPDC,
two main approaches have been used in past studies:
the so-called ‘‘empirical’’ approach, which establishes
the relationship between the observed field values of
cost and usage, and the so-called ‘‘engineering’’
approach which is based on theoretical relationships
between damage cost or damage, and usage (load). The
empirical approach is top-down, starting with actual
knowledge of the cost incurred in each category
(MR&R expenditure incurred at each individual pave-
ment segment) and then establishes a relationship
between the total cost and the usage. After this
relationship is established, a simple first derivative of
the total cost function with respect to the usage (i.e.,
road use measure, such as VMT or ESAL), gives the
MPDC. The engineering approach, on the other hand,
is bottom-up and involves analysis of a unit length of
road segment to establish a theoretical relationship
between the total cost and pavement durability and
traffic loading. After the relationship is established for
the unit road segment, the results are generalized for the
entire network or road system (32). The marginal PDC
estimation on the basis of these and other miscellaneous
approaches is discussed in ensuing paragraphs.

3.4.1 MPDC Estimation using the Empirical Approach

An empirical approach for MPDC estimation using
field data, which has in the recent past been referred to
as the ‘‘econometric’’ approach by some researchers
(22), is a two-step process: (1) models are estimated to
explain the MR&R cost as a function of independent
variables such as usage, climate, pavement condition,
and pavement structure characteristics; and (2) the
estimated models are differentiated with respect to the
usage (i.e., the road-use variable (traffic)) to yield the
desired marginal cost. A number of past studies that
used this approach are discussed herein.

Gibby et al. (33) studied the factors affecting
pavement maintenance cost and also evaluated the
impact of heavy traffic on maintenance cost. Using a
Cobb-Douglas model for pavement maintenance cost,
the authors established that the impact of one heavy
truck (defined as a truck with at least five axles) on a
pavement is about 70 times that of a light truck. The
details of the model developed by Gibby et al. (33) are
presented in Part II Appendix B.

The authors estimated that the average annual
maintenance cost per heavy truck and passenger car
was approximately $7.60 and $0.08 per mile, respec-
tively. The study results suggested that the climate has a
small impact on pavement maintenance cost, and that
trucks inflict much more damage to road infrastructure
compared to autos. The authors used over 1,000 one-

mile segments for which traffic data were available, and
with a dependent variable of total pavement main-
tenance cost for each one-mile section during the three
fiscal years 1984–1987. Because the analysis period
considered by the authors was rather short, it is likely
that the data may not have contained those pavement
activities typically performed at longer time intervals
such as minor or major rehabilitation. Also, the
estimated model does not have an explanatory variable
representing the pavement condition or age. Since
pavement maintenance activities are condition-respon-
sive, it may have been useful to include a pavement
condition explanatory variable in the cost model.

Martin (34) conducted a study for the Australian
Road Research Board (ARRB) that estimated load-
related pavement maintenance and construction costs.
Separate models were developed for annual average
total maintenance expenditure, annual average routine
maintenance expenditures, and annual average periodic
maintenance expenditure. The author used pavement
age, cumulative traffic loading ESAL, Gross vehicle
mass, passenger car units, and AADT as independent
variables. The model details are presented in Part II
Appendix B. The models took weathering into account
because a variable representing age was included in the
models. The study estimated that, on average, 50% of
pavement maintenance expenditures were load-related
and can be attributed to heavy vehicles on the basis of
the gross weight. Also, approximately 45% of pavement
construction/replacement costs were found to be load-
related and could be allocated among heavy vehicle on
the basis of ESAL-Km (34).

Hajek et al. (35) used simulated data on pavement
maintenance and rehabilitation cost to study the impact
of truck weight regulations on pavement maintenance
costs in Ontario. That study investigated the impact of
four proposed truck regulatory scenarios which
addressed truck size and weight changes. The cost
impact was evaluated on the basis of the difference
between the truck traffic resulting from existing and
proposed truck regulation scenarios. The assessment
was done for a 20-year analysis period. The entire
Ontario road network was divided into 20 representa-
tive categories, and the truck fleets which needed
regulatory changes were divided into 25 vehicle classes.
Using projections, the anticipated traffic stream for
each regulatory scenario and each road type was
estimated in terms of ESAL-Km. The total change in
ESAL-km for each road segment for 20-year analysis
period was then estimated, and the anticipated traffic
stream was allocated to the 20 representative road
categories. In the last phase of the study, the total
change in pavement cost resulting from different
regulatory scenarios was estimated. For each road
type, the maintenance and rehabilitation activities were
simulated for 60 years, and their corresponding cost
was estimated over the 60-year period and annualized.
The annualized cost was modeled as a function of the
annual ESALs and different geographic regions (south-
ern and northern Ontario). The estimated model was

9Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/01



differentiated with respect to ESALs to estimate the
PDC per ESAL-km. On the basis of the PDC estimate
and expected total change in ESAL-kms associated
with each regulatory scenario, the total cost impact
was calculated for each of the four regulatory
scenarios, each representative road category, and each
year of analysis period. Part II Appendix B of the
present report presents the pavement maintenance and
rehabilitation cost models and PDC for different road
classes. The adopted methodology and results of the
study clearly demonstrated that it is quite feasible to
use simulated data and a highway agency’s MR&R
strategies can be used to quantify the pavement
damage caused by heavy vehicles under different load
scenarios.

In 2000, Li and Sinha estimated the load and non-
load shares of pavement maintenance and rehabilita-
tion expenditures using Indiana data (36). In that study,
the pavement maintenance and rehabilitation expendi-
ture were estimated separately for flexible, rigid, and
composite pavements. Ordinary least square (OLS)
regression models were developed to establish the
relationship between pavement rehabilitation expendi-
tures and pavement deterioration factors. The general
form of the developed models is as follows:

EXPEND~aoz
Xk

i~1

ai � Xið Þzei ð3:1Þ

Where: EXPEND5 expenditure on maintenance and
rehabilitation or rehabilitation only; ao, ai 5 model
parameters; Xi5 A set of parameters representing the
change in international roughness index (IRI) in one
life cycle (climate, pavement age, annual ESALs,
pavement structure, and construction features); ei 5

error term.

The specific models developed for the different
pavement types are presented in Part II Appendix B
of the present report.

After estimating the expenditure models, the expen-
diture per ESAL-mile was calculated by differentiating
the expenditure models with respect to the cumulative
ESALs for each pavement type, as follows:

MEXPEND~
L EXPEND

L CESALs
ð3:2Þ

Where, MEXPEND is the marginal periodic main-
tenance and rehabilitation or rehabilitation only
expenditure per ESAL-mile (36,37). The study esti-
mated the marginal pavement rehabilitation expendi-
ture using the average thickness for different types of
pavements. The marginal pavement rehabilitation
expenditure was estimated as $0.023 and $0.038 per
ESAL-mile (2000 constant $) for flexible and rigid
pavements, respectively (details are provided in Part II
Appendix B of the present report).

For routine maintenance expenditures, the concept
of a modified damage index was used. A system of
simultaneous equations was established to estimate the
routine maintenance expenditure, thus taking care of

endogeneity bias. Pavement performance was repre-
sented by the modified damage index as follows:

MDI tð Þ~100
IRIt{IRIt{1

IRIt{1

� �
ð3:3Þ

Where: MDIt5 Modified damage index at year t;
IRIt 5 IRI at year t; IRIt215 IRI at year t21.

The Li and Sinha study (36) assumed that the relative
change in pavement condition at the end of a given year
(year t) is a function of pavement traffic and climatic
loading for the same year and that the funds needed to
maintain in the following year (year t+1) will depend
upon the given year’s (year t) pavement deterioration
(37,38). The general form of the model developed for
flexible, rigid and composite pavement for annual
routine maintenance expenditure is as follows:

ARME tz1ð Þ~aoz
Xk

i~1

ajXit

� �
ze1 ð3:4Þ

MDI tð Þ~boz
Xl

j~1

bjXit

� �
ze2 ð3:5Þ

Where: ARMEt+15 Annual routine maintenance
expenditure for year t+1; MDIt5 Modified damage
index at year t; Xit5 A set of parameters representing
climate, pavement age, annual ESALs, pavement
structure and construction features; ao, bo, ai, bi 5

model parameters; e1, e2 5 error terms.

Ghaeli et al. (39), on the basis of the maintenance
strategy used by the Ontario Ministry of Transpor-
tation, studied the cost implications of road character-
istics and different vehicle configurations using a 30-
year life-cycle pavement cost for Ontario roads. That
study used the Ontario Pavement Analysis of Costs
(OPAC) model to estimate the pavement maintenance
and rehabilitation costs per ESAL-Km. OPAC has
separate equations calibrated for northern and south-
ern Ontario and estimated the load- and non-load-
related PDCs separately. The analysis cost elements
included: construction, reconstruction, and mainte-
nance costs as well as salvage value. Using the OPAC
model the authors predicted the maintenance and
reconstruction activities for different pavement sections
depending on the traffic loading and geographical
location. For pavement life-cycle cost estimation, the
average costs for different maintenance and rehabilita-
tion activities were obtained from Ontario’s Ministry of
Transportation. A relationship was established between
the pavement life-cycle costs and the traffic loading and
was used for PDC estimation. The researchers found
that construction specifications, vehicle class, and road
class can have significant influence on the cost
responsibility. The study speculated that if trucks were
the only users of the road system (e.g., truck-only
lanes), then the actual life-cycle cost would be about
80% of the total life-cycle cost of a system which has
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both passenger cars and trucks although fewer lanes
would be required. The study concluded by arguing
that trucks derive a significant benefit from the road
system and therefore need to share a greater proportion
of the cost for road damage (39).

Herry and Sedlacek (40) estimated marginal main-
tenance and renewal (rehabilitation) costs using data
from Austria. Cost and traffic data (volume, gross tons,
and axle loads) for 46 motorways sections from 1987 to
2004 were used to estimate OLS regression models. The
model developed for marginal maintenance and
renewal cost has the following form:

C~aoza1AADTcarza2AADTtrucks&buses ð3:6Þ

Where: C is the maintenance and rehabilitation cost
for one year; AADTcar is the car AADT; AADTtrucks&

buses is the truck and bus AADT; a0, a1 and a2 are the
model parameters.

Based on the developed model, the estimated
marginal PDC (in 2002 constant dollars) was found
to be $0.0007 per vehicle-kilometers (VKm) for vehicles
up to 3.5 tons (gross vehicle weight (GVW)) and $0.023
(2002 Constant $) per VKm for vehicles weighing more
than 3.5 tons. The average MPDC was found to be
$0.0017 per VKm. A major issue with the Herry and
Sedlacek study (40) was that both of the independent
variables in the estimated model were found to be
statistically insignificant at a 95% significance level,
which raised serious concerns about the statistical
validity of the results reported by the study.

Schreyer et al. (41), using 1985–1998 data from 127
sections on the Swiss road network, estimated
marginal maintenance and rehabilitation costs for
different vehicle classes. The costs were estimated on
the basis of total VKm (all vehicles), total gross ton-
Km, and total axle load equivalent kilometers. The
axle weights of all vehicles were converted to the
standard axle of 18,000 lbs. Thus, cars, light trucks,
and heavy trucks were considered to have 0.0001,
1.21, and 1.32 standard axles, respectively. The three
types of models developed by that study have the
following general form:

Ln Costoperational&maintenance

� �
~czb: ln Xð Þ ð3:7Þ

Ln Costconstruction&maintenanceð Þ~czb: ln Xð Þ ð3:8Þ

Ln Costupgrade&rehabilitation

� �
~czb: ln Xð Þ ð3:9Þ

Where: X is the total kilometer travelled, total
weight-distance, or total ESALs by vehicles, for each
class; c and b are the model parameters.

Of the various models that used different units of
facility usage, the weight-distance provided the best-
fitting model. The marginal cost for one additional
weight-distance unit for the three vehicle categories
was obtained by differentiating the cost functions with
respect to weight-distance. Based on the developed
model, the estimated marginal PDC (in 2002 constant

dollars) was found to be $0.0005per VKm for
passenger cars and $0.0472 (2002 constant $) per
VKm for trucks using the average weight of a car and
a truck (41,42).

In 2002, Link used cross-sectional data from
Germany’s road network for estimating the renewal
cost (rehabilitation cost) (43). The author calculated the
MPDC for one additional truck by fixing the annual
average daily traffic (AADT) of passenger cars. The
MPDC was calculated on the assumption that all cost is
attributed to heavy vehicles. The MPDC for trucks
ranged from $0.009 to $2.000 per VKm (43). The
average value of MPDC was found to be $1.486 per
VKm. Details of the Link model are presented in Part
II Appendix B of the present report.

Ozbay et al. (44) estimated MPDC using data from
rehabilitation and periodic maintenance projects in
2004–2006 in New Jersey. The estimated cost model is
presented as follows:

Cost~
796:32 � Lð Þ0:40

NLð Þ0:89

P
ð3:10Þ

Where: Cost 5 cost of maintenance per lane ($1000s/
year); L 5 roadway length in miles; NL 5 number of
lanes; P 5 time in years between two resurfacing
activities.

Using the procedure developed by Huang (45), the
authors estimated the time between two resurfacing
activities as the ratio of allowable and actual traffic
loading, based on the annual number of trucks. The
time between two resurfacing activities (P) was calcu-
lated as follows:

P~
1,50,000

Q � Tp � Tf � 365
ð3:11Þ

Where: Q5 traffic volume (vehicles/day); Tp 5 truck
percentage in traffic volume; Tf 5 truck factors for
different road functional classes.

The marginal cost based on the resurfacing cost and
the design period was estimated as follows:

Cost Mð Þ~ 796:32 � Lð Þ0:40
NLð Þ0:39�t

P �Q � 365 � 24
ð3:12Þ

Where: t 5 trip duration in hours; Cost (M) 5

marginal maintenance cost $ per vehicle ($2005); Q 5

traffic volume (vehicles/hour); L, NL and P are as
defined earlier.

Haraldsson (46) estimated the MPDC for the
Swedish national road network using data from 1998–
2002. The dataset comprised the maintenance and
operational cost, VMT by passenger car and heavy
vehicles, pavement type, and road functional class. The
dataset was available for 145 geographic regions but
not for individual pavement sections. Consistent with
practices of the Swedish Road Administration at the
time, 0 and 1.3 ESALs were used for passenger cars and
heavy vehicles, respectively. Thus, the model results
estimated MPDC per VKm for heavy vehicles only.

11Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/01



The generalized model estimated by Haraldsson (46) is
presented as follows:

LnCit~azb1 Rð Þzb2 Yð Þzb3 lnCit{1ð Þ

zb4 lnQitð Þzb4 lnQitð Þ2zb5 lnZitð Þzeit

ð3:13Þ

Where: Cit 5 total pavement maintenance cost for
each geographic region i in year t; R 5 region-specific
dummy variable (for example, North); Y 5 year
dummy variable; Qit 5 total heavy-vehicle Km
travelled in geographic region i in year t;
Z 5 vector describing the road network (length of
road network and pavement types); eit 5 random error
term.

From the model results, Haraldsson (46) estimated
that the overall MPDC (2007 constant dollars) for
heavy vehicles ranged from $0.0957–$0.1860 per VKm.
For paved and gravel roads, MPDC ranged from
$0.0222–$0.0236 and $0.0819–$0.0847 per VKm,
respectively. The author used the aggregate cost data
for each geographic region as the dependent variable;
this is the first serious limitation of the study. A more
appropriate approach might have been to use the
disaggregate traffic and maintenance expenditure data
for each of several individual roadway sections. There
are a number of other problems with the methodology
used in that study: The cost data spanned a very short
period of time, and it is likely that the cost of
maintenance activities that are carried out at longer
time intervals, such as minor and major rehabilitation,
were inadequately accounted for in the analysis.
Finally, because a single ESAL value of 1.3 for each
truck was considered, this yielded a single MPDC
value for all truck types, irrespective of their GVW
and number of axles.

Liu et al. (47) used field data to estimate the PDC
due to heavy vehicle loading resulting from the
shipment of processed beef in southern Kansas on a
41-mile highway section (US 50/400 from Dodge City
to Garden City, Kansas). This section was divided into
four segments depending upon the type of pavement
structure. The pavement maintenance data were col-
lected from the Kansas Pavement Management
Information System (PMIS). The PMIS provided
information on all major and minor rehabilitation
activities, but no information was available on routine
maintenance. Synthesized traffic data were used as no
traffic estimates were available from the Kansas
Department of Transportation for the highway seg-
ments selected for the study. Approximate values of
the total shipments were obtained from nearby
industries and counties. The numbers of vehicles using
US50/400 were estimated on the basis of shortest-path
routes. The load-related pavement damage (PSR loss)
was estimated using the standard AASHTO equation,
and the pavement structure deterioration due to
environmental factors was estimated using the
Tolliver decay function, which is embedded in the
pavement deterioration model of the Highway
Economic Requirement System (HERS). The pave-

ment decay rate due to environmental factors is given
by the following equation:

PEnv~Pini � e {thð Þ ð3:14Þ

Where: h 5 decay rate due to environmental loss;
PEnv 5 pavement decay rate due to environmental
factors; Pini 5 Initial PSR; L 5 design life of pavement.

The entire procedure used to estimate the PDC is
summarized as follows:

N Annual ESALs for each pavement segment was deter-
mined on the basis of data including truck miles traveled
and the number of ESALs per truck.

N The ESAL life of the pavement segments (loss in PSR
from an initial PSR of 2.5 to a terminal PSR of 4.2) was
determined using the AASHTO equation.

N The PSR loss due to environmental loading was
estimated using the Tolliver procedure.

N The average annual maintenance cost per mile was
computed using the data provided by the Kansas PMIS.

N The portion of the load-related PDC was estimated by
dividing the PSR loss due to environmental loading by
the total allowable PSR loss (1.7 units).

N The adjusted average annual maintenance cost was
estimated by multiplying the average annual mainte-
nance cost with the load-related PDC factor estimated in
the previous step.

N The maintenance cost per ESAL-mile was estimated by
dividing the adjusted average annual maintenance cost
per mile by the ESAL life of the pavement.

N The PDC occasioned by heavy vehicles was estimated by
multiplying the annual ESAL for heavy trucks with the
cost per ESAL.

The study estimated a PDC of $1,727 per mile per
year attributable to the beef industry. A limitation of
the study was that it used estimates, rather than actual,
values of traffic data (beef shipment records), thus
raising possible questions about the data accuracy.
Also, the traffic data covered a time period starting
from 2005 while the maintenance data spans 1985–
2003, thus there was temporal inconsistency. A more
appropriate approach would have been to obtain the
most recent traffic data available for selected roadway
segments, duly adjusted using a traffic growth factor.
Traffic and pavement maintenance data from a
consistent time period could have been used because
the study objective was to estimate how much damage
was caused to pavement from a specific number of
vehicles. Lastly, the authors did not account for the
pavement reconstruction cost, thus arriving at a PDC
estimate that may be an underestimate of the true cost.

3.4.2 MPDC Estimation Based on Engineering Approach

This approach has been termed the perpetual overlay
indirect approach, indirect approach, engineering
approach, or bottom-up approach, in past literature
(22,32,48). In this approach, using theoretical knowl-
edge, a unit dimension of the infrastructure (specifi-
cally, one lane-mile) is analyzed and a repair cost vs.
usage relationship is established. Then the results are
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generalized for the entire network. The main concept is
the derivation of an expression for the present value of
recurring fixed-intensity rehabilitation (such as an
overlay of constant thickness) over an infinite analysis
period, as a function of annual traffic. The past studies
that used this approach generally considered only a
single type of overlay treatment for MPDC estimation.
In doing so, they had assumed, implicitly or explicitly,
that these overlays constitute the dominant share of
pavement maintenance and rehabilitation (M&R) cost
and that all other maintenance activities and recon-
struction cost are negligible. However, the simplifying
assumption of a single overlay at constant interval does
not adequately reflect practical agency decision-making
processing and can lead to unrepresentative estimates
of M&R cost over the life cycle. A brief discussion of
studies using this approach is presented in the ensuing
paragraphs.

In 1988, Newbery presented the fundamental theo-
rem for estimating marginal overlay cost using an
infinite analysis period. The expression he used for
determining the MPDC (or marginal overlay cost) for
an additional ESAL is:

Marginal Cost~q
C

TQ

� 	
ð3:15Þ

Where: C is rehabilitation treatment (overlay) cost
per km; T is the life of rehabilitation treatment; Q is the
total annual traffic (ESALs); j is the part of road
deterioration caused by traffic.

Newbery’s marginal maintenance cost formulation is
based on the following assumptions (22,49):

N The age of all roads in the network is uniformly
distributed between zero and some time interval, t.

N Traffic remains constant over the life span of a pavement
segment.

N There is no weathering action on the road and all
pavement deterioration can be attributed to traffic
loading.

N Resurfacing constitutes a dominant part of pavement
maintenance and rehabilitation cost and hence all other
maintenance costs can be ignored.

Newbery (49) estimated the average MPDC for an
additional ESAL using roughness as the performance
indicator. It was further assumed that maintenance is
condition-responsive and that the road will be overlaid
whenever roughness reaches a certain threshold value.
If weathering is ignored, then the MPDC is simply the

overlay cost per lane-Km divided by the total number
of ESALs during the life span of an overlay. Thus, road
user charges were represented as the average cost of the
overlay. Newbery further extended his study to account
for pavement weathering using data from Tunisia, and
concluded that the estimated MPDC would not
efficiently recover road maintenance cost; on this basis,
he concluded that the MPDC and congestion cost, if
considered together, can help an agency design an
efficient road user charging system. For roads in
Tunisia with different design lives, traffic volumes,
and maintenance strategies, the author estimated that
the marginal overlay cost (1983 constant dollars) ranges
from $0.0013 to $0.0258 per ESAL-Km (49).

Again, Newbery’s work was based on a number of
assumptions, some of which may be considered quite
debilitating; thus, the MPDC estimation in that study
may not represent the true picture. It is a truism that
any highway network is comprised of pavement
segments of varying ages and traffic volumes.
Furthermore, traffic volume typically continues to
grow over time at any given road segment. While it is
true that rehabilitation constitutes a dominant part of
pavement repair costs, non-consideration of reconstruc-
tion and periodic and routine maintenance costs can
result in erroneous MPDC estimates. Considering the
limitations of Newberry’s study, it is necessary to
eschew approaches that are unable to incorporate
realistic highway agency MR&R practices into
MPDC estimation.

Small et al. (50) improved Newbery’s work by
estimating an MPDC that accounted for both weath-
ering and traffic. In the Small study, PDC models were
estimated by deriving expressions for the net present
cost of resurfacing as a function of traffic loading Q
and pavement durability D. The basic formulation used
by Small et al. proceeds as follows: Consider a single
lane of a flexible pavement for which an agency uses an
overlay of constant intensity. The highway receives an
overlay in a perpetual cycle which is triggered by
deterioration to a predetermined threshold level as
shown in Figure 3.3.

Let Q 5 annual traffic loading; D 5 pavement
durability (number of ESALs to failure); T 5 time
interval between two rehabilitation (resurfacing) treat-
ments; C 5 cost of the rehabilitation a treatment.

Then, the interval between two resurfacing actions is

given by: T~
D

Q

Figure 3.3 Resurfacing at regular intervals.
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In order to incorporate the effect of climate, Small et
al. (50) used the results of a World Bank study entitled
‘‘Road Deterioration and Maintenance Effects’’ that
established relationships between pavement roughness
and cumulative ESALs at any given time (51). Paterson
assumed that pavement roughness increases linearly
with cumulative loading and exponentially with time.
Small et al. (50), using the AASHTO road test data,
also established the relationship between pavement
quality and pavement durability (number of ESALs to
failure). Making use of these relationships, the interval
between two successive resurfacing actions (rehabilita-
tions) can be re-written as:

T~
D

Q
e{mT
� �

ð3:16Þ

Where, m is the annual rate of increase in pavement
roughness.

Small et al. (50) used a 4% rate of increase of
roughness in their study. Suppose that the unit cost of
resurfacing is C ($/Lane-mile) which is incurred every T
years, and the interest rate is r. Also, assuming that the
overlay interval is constant, then the present cost M, of
all future resurfacing actions (infinite analysis period),
using annual discounting is:

M~
C

e{rt{1ð Þ ð3:17Þ

The marginal resurfacing cost was estimated by
partially differentiating the annualized resurfacing cost
(rM) by annual traffic loading as follows:

MC~r
L M

L Q

� 	
~r

L M dT

L T dQ

� 	

~{
r2e{rTC

e{rT{1ð Þ2

 !
� dT

dQ

� 	 ð3:18Þ

The marginal cost when the effect of climate is
ignored is:

MC~{
r2e{rTC

e{rT{1ð Þ2

 !
� T2

D

� 	
ð3:19Þ

Also, the marginal cost when the effect of climate is
duly accounted for is:

MC~{
r2e{rTC

e{rT{1ð Þ2

 !
� T2

D

� 	
� emt

1zmT

� 	
ð3:20Þ

As shown in Part II Appendix C of the present
report, the author concluded that the MPDC (1985
constant dollars) varied between $0.0148 and $1.2545
per ESAL-mile at the existing investment levels, and
0.33 to 101.30 cents per ESAL-mile under optimal
investment levels for different road functional classes.
The finding, that an optimal investment decision results
in a lower overall cost to each group of society, is an
important contribution of the Small study. The five-axle
semi-trailer with 80,000 lbs GVW would be charged

approximately 2 cents per ESAL-mile (in 1985 constant
dollars), on Interstates and local roads. Small et al. (50)
further concluded that climate does not affect road
deterioration independently; rather, it is the interaction
of climate with axle weight that affects pavement
deterioration, and climate makes pavement more
vulnerable to damage by heavy loads. The positive
aspects of the study are that it incorporated the effect of
climate into MPDC estimation formulation. However,
it did not consider reconstruction and periodic and
routine maintenance costs, a failing that is discussed in
Chapter 5 of the present report. The study also assumed
a constant rate of increase of pavement roughness with
respect to traffic loading; in actuality, however, pave-
ment segments deteriorate at different rates, depending
upon traffic and climatic loading. Furthermore, the
assumption that the overlay timing intervals are the
same throughout the life cycle and the derivation of a
single MPDC expression for the entire network seems to
be rather overly simplifying and inappropriate, as is
discussed in Chapter 5.

Vitaliano and Held (52) estimated the MPDC in New
York using data from 475 roadway segments in that
state. Their study used a ‘‘theoretical’’ analysis for a
single pavement segment to derive an expression for the
present cost of recurring fixed-intensity rehabilitation
over an infinite analysis period. It was assumed that
50% of pavement deterioration is caused by traffic and
50% by climate (an assumption based on work done by
Paterson (51). This study estimated a cost (1990
constant dollars) of $0.076 per ESAL-mile as the
average road user charge. The MPDC was explicitly
calculated for a five-axle semi-trailer with 80,000 lbs
GVW for different road functional classes (see Part II
Appendix C). However, the study did not account for
the cost of reconstruction and routine maintenance.

In 1996, the results of the Transportation Research
Board (TRB) study ‘‘Paying Our Way’’ were published
(53). The primary focus of the study was to investigate
whether freight shippers were incurring the full social
cost for their use of the public infrastructure (highways,
railroads, and waterways) or whether they were being
subsidized. For highways, the study considered the
marginal cost of externalities including congestion,
crashes, air pollution, energy security, and noise in
addition to the MPDC. That study estimated the
marginal external cost and the infrastructure damage
cost (for pavements and bridges) in terms of dollars per
truckload by adopting an approach similar to Newbery
(49), but incorporating the weathering impact. The
results suggested that the road-use fee per truckload
paid by truck operators for a two-lane road exceeded the
cost of infrastructure damage occasioned by the trucks.
In the case of Interstate highways, the road-use fee paid
by truck operators was almost equal to the occasioned
infrastructure damage cost. Similar to the other studies,
the TRB study (53) did not explicitly account for
reconstruction and routine maintenance cost.

Using the Newbery approach, Lindberg estimated
MPDC using data from the Swedish long-term pave-
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ment performance program. The study used a cracking
index as the performance indicator, ignored effect of
climate for simplicity, and considered rehabilitation
cost only (22,54). The MPDC estimated in this study
(2002 constant dollars) varied from $0.0007 to $0.0176
per ESAL-Km for high-quality and reduced-strength
roads, respectively. In terms of VKm, the MPDC was
estimated at $0.020 per VKm for combination trucks
and $0.0034 per VKm for passenger cars. The authors,
in acknowledging the shortcomings of their study
approach stated that new overlay (categorized as
rehabilitation) formed only 30% of the total main-
tenance budget. Thus the methodology did not yield
results that indicated the actual and full cost of
maintenance and rehabilitation.

Recently, Anani and Madanat (48) presented a
methodology for estimating MPDC by considering
both the rehabilitation and periodic maintenance costs.
The authors adopted a formulation similar to that used
by Newbery (49), Small et al. (50), and Vitaliano and
Held (52). The only difference in the Anani and
Madanat study (48) was their consideration of two
treatment categories instead of one (rehabilitation and
periodic maintenance). Similar to Small et al. (50), for a
single pavement resurfacing activity, the MPDC was
expressed as follows:

MC Rð Þ~ er{1ð ÞrerT C

erT{1ð Þ2
T2

D

� 	
ð3:21Þ

Where: MC (R) is the MPDC in the case of a
highway agency that uses a single repeated overlay of
constant intensity; r, T, D, and C are as defined
previously in equations 3.17 to 3.20.

The authors presented a MPDC estimation formula-
tion that involved two interrelated pavement main-
tenance activities (Figure 3.4): rehabilitation and
periodic maintenance. It was further assumed that
periodic maintenance activities are performed more
frequently (and have lower cost) compared to rehabi-
litation activities. An expression for the present value of
recurring fixed-intensity rehabilitation and periodic
maintenance over an infinite analysis period was
derived by the theoretical analysis of a single pavement

segment. The MPDC is given by the following
equation:

MC rzpmð Þ~

edr{1
� � L M

L T pmð Þ
�

dT pmð Þ
dQ

z
L M

L T rð Þ
�

dT rð Þ
dQ

� � ð3:22Þ

Where: MC (r+pm) 5 MPDC for rehabilitation and
periodic maintenance activities at a fixed interval; M 5

present worth of all future rehabilitation and periodic
maintenance activities; T(pm) 5 time interval between
two consecutive periodic maintenance activities; T(r) 5

time interval between two consecutive rehabilitation
activities; Q 5 annual traffic loading; dr 5 discount
rate.

From the study documentation, Anani and Madanat
(48) obviously started with earnest intentions to
estimate the MPDC for MR&R, but it seems that the
final research did not attain the stated objective. While
the authors continuously advocated that MPDC should
be based on realistic and practical highway agency
maintenance strategies and should include all costs
associated with pavement maintenance, their solution
seemed viable to meet this requirement; thus, the
research results may be rather limited in potential
practical application. The developed formulation is
very restrictive and does not fit into highway agency
maintenance practices as it uses only two types of
treatments at fixed intervals and fails to account for
routine maintenance and reconstruction costs. That
study also used a single representative pavement
segment and infinite analysis period for MPDC
estimation. The authors did not provide any MPDC
estimate at the study conclusion. In what could be a
possible acknowledgement of the inherent limitation of
their assumptions, the authors concluded that it was
difficult to generalize their study results.

The researchers in that study did not use field data to
demonstrate the application of their proposed metho-
dology; instead, using hypothetical values for periodic
maintenance and rehabilitation, they demonstrated
(correctly) that periodic maintenance should not be
ignored as was the case in most similar past studies. The

Figure 3.4 Rehabilitation and periodic maintenance at regular intervals.
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lower life-cycle cost associated with a strategy that
includes periodic maintenance and rehabilitation com-
pared with one that has only periodic maintenance or
only rehabilitation was proven using hypothetical data:
the authors demonstrated that MPDC estimated
separately for periodic maintenance or rehabilitation
is greater than when rehabilitation and periodic
maintenance are considered together. Details are
provided in Part II Appendix C.

3.5 Miscellaneous other Approaches for HCA/PDC
Estimation

Besides the two major contexts of PDC analysis,
there have been a number of research efforts with other
contexts or purposes such as the investigation of the
impact of truck weight and size changes on infra-
structure repair costs. A discussion on these studies is
provided below.

3.5.1 Truck Size and Weight Studies and Pavement
Repair Cost

Hewitt et al. (55) estimated the impact of a change in
truck weight and size on the infrastructure, truck
operation cost, and overall state economy of Montana.
Four different maximum GVW scenarios were con-
sidered for their analysis. A reduction in in the state
maximum GVW was represented by three loading
scenarios (80,000 lbs, 88,000 lbs, and 105,500 lbs) while
the fourth scenario proposed an increase to 128,000 lbs.
The authors used hypothetical traffic and pavement
maintenance cost data to determine the percentage
change in pavement maintenance cost due to the change
in maximum GVW. A new traffic stream was identified
for each of the proposed GVW scenarios, assuming that
the present GVW is replaced by the proposed GVW
limit. The new traffic stream was predicted by assigning
all the freight being transported in the base year (study
year) to an appropriate vehicle that would be hauling
the same freight under a different maximum GVW for
four different scenarios. For each scenario, the PDC
resulting from the new traffic stream was estimated
using standard AASHTO equations. The PDC analysis
was performed for a small sample of pavements and the
results were applied to the entire state. The change in
equivalent uniform annual maintenance cost for each
scenario was estimated. The study argued that there
was no marked difference in equivalent uniform annual
maintenance cost due to the proposed changes in GVW
limits. The authors did not provide any details about
the maintenance and rehabilitation data collected for
the analysis or the length of the analysis period over
which the total change in pavement maintenance cost
was calculated.

Using simulated data, Roberts and Djakfar (56)
investigated the impact of increasing GVW limits from
80,000 to 100,000 lbs in the state of Louisiana. For
analysis purposes, vehicles hauling four commodities
(rice, timber, cotton, and sugarcane) were selected for

the simulation. The analysis focused on PDC that
resulted from increased GVW limits. The AASHTO
design equation and the concept of ESAL were used to
estimate changes in pavement M&R costs due to
increased GVW limits. The routes typically used by
trucks transporting the four selected commodities were
selected with the help of industry personnel. The M&R
data were collected for the candidate roads from the
Louisiana Department of Transportation. There were
11 selected roads for which M&R data were available.
Then, the payloads of trucks hauling the commodities
were estimated using industry data and expert opinion.
Using available statistics from federal sources, the
quantities of the selected commodities that were
expected to be hauled from year 1999 to 2008 were
estimated. The vehicle loads established for the
different weight scenarios are presented in Part II
Appendix D of the present report.

The base scenario had a GVW of 86,000 lbs for a
five-axle semi-trailer and 49,000 lbs for a two-axle
truck. Thus, for each road segment, three traffic
streams were estimated for three load scenarios. The
rehabilitation costs needed to sustain the traffic were
estimated using AASHTO equations for each of the
traffic scenarios. Using a compound interest rate of 5%,
the present worth of all rehabilitation costs for each of
the three weight scenarios and 15 different traffic
streams were estimated in $/lane-mile and compared.
The results showed that an increase in the GVW limits
had a more severe effect on non-Interstate pavements
compared to Interstate pavements. The authors pro-
posed an increase in road-use fees for heavy vehicles to
compensate for the road damage. Simulated traffic load
data were used in the study. The authors had rather
limited pavement maintenance data for the selected
highway segments; actual M&R expenditure data or
simulated data that duly reflected the agency’s main-
tenance and rehabilitation practices, could have been
used.

3.5.2 Studies that used Mechanistic Models for Pavement
Damage Analysis

Parker and Hussain (57) proposed a methodology to
quantify highway pavement damage caused by vehicles
on the basis of the GVW, the number of axles, and the
axle load distribution on individual axles. The
KENLAYER mechanistic model was used for the
pavement damage analysis. This model expresses the
load in terms of the axle load spectra (distributions)
instead of ESALs. In the first step of using a
mechanistic model, stress, strains and displacements
are calculated in the pavement structure. In the second
step, a mechanistic-empirical model predicts damage
caused by loading. The proposed methodology was
applied to compare the damage caused by four-axle and
five-axle trucks using data from WIM stations (see
Figure 3.5). Using the assumed pavement thickness and
layer characteristics, the KENLAYER model was used
to estimate tensile and compressive strains for trucks
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with different GVWs and different axles load distribu-
tions. The curves fitted to the tensile strain were more
consistent with the AASHTO fourth-power curve, thus
validating the AASHTO results for comparatively
lower loads. On the other hand, the curves fitted to
the compressive strain were closer to the third-power
law, thus validating more recent research (50) which
found that at higher loads the damaging power of
an axle is closer to the third-power rather than the
fourth-power.

Using maintenance data from a typical flexible
pavement in New York, the PDC (in 2006 constant
dollars) for a five-axle, 80,000 lbs GVW was estimated
as $0.11/lane-mile. In the dataset, trucks had an
average speed of 58 miles mph and an assumed 80 psi
tire pressure. A typical pavement structure was
assumed for analysis to compute the PDC for dif-
ferent truck classes. The Parker and Hussain study at
the individual-vehicle-level, and with many underlying
assumptions, was able to show that the PDC varies for
different axle weights, axle load spectra, vehicle
speeds, and other factors.

3.5.3 Studies that used Mechanistic-Empirical Pavement
Design

Hong et al. (58) proposed a site-specific methodology
for estimating the load-related cost of pavement
construction using the Mechanistic-Empirical Pavement

Design Guide (MEPDG) which uses axle load spectra
instead of ESALs. Their proposed methodology is
summarized as follows:

N Actual traffic data were collected from a single WIM
station over a four-year period and were used to generate
the axle load spectra.

N A typical flexible pavement structure and material used
in Texas was considered for analysis purposes. Due to
the very large number of possible combinations of
different pavement structural layers, the authors fixed
the thickness of the base and subbase layers at twelve and
six inches, respectively, and used six different surface
layer thicknesses (three to eight inches, in one inch
increments). Thus, in total, six different pavement
structures were used for analysis.

N Consistent with MEPDG capabilities, climatic data were
included in the analysis.

N For pavement performance analysis, the pavement
design life was taken as 20 years. Surface rutting was
selected as the performance indicator, with a threashold
value of 0.5 inches.

N After selecting the failure criteria, the maximum allow-
able number of repetitions to failure (Ri) for each truck
class was determined using the MEPDG. This provided a
measure of pavement damage from a vehicle class
perspective. An iterative procedure was used to ensure
that for the selected pavement design life of 20 years, the
maximum number of passes of a particular truck class
for a fixed-failure criterion was estimated. Similarly, for
mixed traffic conditions, the total number of repetitions
to failure was determined (Rmix).

Figure 3.5 Pavement damage analysis for 4-axle and 5-axle trucks (57).
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N The relative damage by a single pass of each truck class i
was obtained as follows:

Dj~
Rmix

Rj

ð3:23Þ

Where: Ri 5 the maximum number of repetitions for
pavement failure for an individual truck class; Rmix 5

the maximum number of repetitions for pavement
failure for a mixed traffic stream.

Lastly, the cost share for an individual truck class i
was calculated as follows:

Ci~
ViDiPj

i~1 VnDnð Þ

 !
ð3:24Þ

Where, Vi is the volume of class i as a percentage of
the total truck traffic volume.

This was a site-specific study and is very appropriate
for similar future efforts at the project level, where the
cost and traffic data from a single site can help to
estimate the share of pavement damage by different
vehicle classes. However, in the context of a network,
where there is a need to have a uniform charging sytem
for a certain geographical region, such as a state,
province, or district, such site-specific studies have
limited utility. At the particular WIM site used in the
case study, there were no vehicles from FHWA classes 7
and 13 and thus these categories were excluded from
analysis. This is one of the limitation of studies using
small datasets and basing PDC estimates on vehicle
classes instead of individual vehicles. The study reports
class share and relative damage by a single pass of
different vehicle classes. However, for PDC estmation,
agencies are interested in total damage by a single pass
of an individual vehicle with a specific GVW and axle
configuration. Any study which is unable to report
results based on these two criteria fails to provide an
equitable way to charge different vehicles. In an ideal
scenario, one could suppose that data are available
from a single WIM station where a sufficent number of
vehicles are present from all classes. By using the
methodology proposed in the present study, it is
possible to estimate the relative damage by a single
pass of individual vehicle classes and the vehicle class
share; however, there is no equitable way to charge
individual vehicles with varying GVWs and axle
configurations. Also, this study discussed only the
procedure for allocating the construction cost of new
pavements, which is a capacity-driven expenditure (17).
PDC estimation studies are focused on estimating the
load-driven expenditures, such as reconstruction, reha-
bilitation and maintenance, which are incured to
strengthen the pavement structure.

Another issue with the Hong et al. (58) study arises
from the total number of passes for each vehicle class
and for the entire traffic mix. It can be noticed from
Table 3.1 that when mixed traffic with load spectra for
all truck classes is entered into the MEPDG, the
maximum number of passses to failure was 2,306,800.

Alternatively, when the individual classes of trucks
(class 9, 10, 11, or 12) and their load spectra were
entered into the MEPDG, the corresponding number of
passes to failure were 1,730,100, 1,452,700, 2,233,800,
and 1,189,900, respectively, which is not intutive. These
results suggest that fewer passes from the individual
truck classes (9, 10, 11, and 12) will result in pavement
failure, than when combined traffic from all vehicle
classes is used. This seems to be indicative of possible
problems associated with the data entry or software
code in that study.

3.5.4 Axle Load Based PDC Estimation

More recently, Alison and Walton (59,60) proposed
a methodology for allocating the cost of new toll road
construction, maintenance, and debt servicing on the
basis of axle loads. The axle-load toll structure was
developed using the principles of HCA. Instead of
assigning the costs directly to individual vehicle classes,
the proposed methodology assigns the costs to the axle-
load classes (which are based on the number of axles
and the load on the individual axles of different vehicle
classes). Assuming a 30-year analysis period and using
data from a single WIM station, the application of the
methodology was demonstrated. First, the authors
defined the axle-load classes using the number of axles
and the axle loads of individual trucks. A common base
toll was estimated simply as the total common cost
divided by the number of vehicles expected to use the
facility during the facility life cycle. The load-related
cost of construction, maintenance, and debt servicing
were allocated using the incremental method, as used in
the 1997 HCA study. Thus, the load-related toll is
proportional to the ESALs contributed by each axle-
load class. The total toll was estimated as the sum of the
base toll (common toll) and the load-related toll. The
study did not consider the climatic effects on infra-
structure damage. Also, no explicit results for the PDC
were provided for the purpose of charging vehicles for
road use.

TABLE 3.1
Number of Passes to Failure, by Truck Class (58)

Vehicle

Class

Total Number of Passes

for Pavement Failure Remarks

4 2,941,900

5 15,198,600

6 4,350,800

7 — No vehicle observed

8 4,489,500

9 1,730,100

10 1,452,700

11 2,233,800

12 1,189,900

13 — No vehicle observed

Mix 2,306,800
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3.5.5 Highway Development and Management Model
(HDM) Approach

The World Bank’s HDM software can be used to
estimate pavement deterioration cost (wear and
damage) and user cost (road damage externalities).
The HDM method, which has the flexibility to be used
for either individual roads or for an entire network, is
often criticized for the lack of detailed calculations in
the output and thus transparency (22). This software
has empirical deterioration models for calculating
different types of pavement distress, such as cracking,
potholes, and rut depth; the method is data-intensive as
detailed pavement and traffic data are needed for
accurate estimation of the PDC. It also needs to be
calibrated for local conditions (61). Bruzelius (22) used
the HDM model for PDC estimation and obtained the
results presented in Table 3.2.

The PDC estimation results presented in Table 3.2
are for a nine-meter wide road having an AADT of
6,000 vehicles, which includes 4,860 cars, 300 pick-up
trucks, 360 light trucks, 360 heavy trucks, and 120
buses. These estimates are based on a 50-year analysis
period and an interest rate of 4%. For the maintenance
strategy, it was assumed that the pavement receives an
overlay any time rutting exceeds 22 mm or there is more
than 10% overall structural cracking. In HDM, a major
portion of cost is the external cost associated with
vehicle movement, and the road wear cost constitutes
only a small portion of the total cost. The HDM
analysis framework uses four models: road deteriora-
tion, works effects, road user effects, and social and
environmental effects. Cracking, raveling, potholes,
edge-breaks, rutting, roughness, texture depth, and
skid resistance are the different distresses considered
while evaluating the level of road deterioration. The
critical distresses considered for pavement failure were
cracking, rutting, and roughness as HDM has separate
models to estimate their time of initiation and rate of
progression (62).

3.5.6 Benefits-based Approach

Highway construction and maintenance can include
a number of benefits in terms of higher mobility, safety,
reduced travel time, reduced vehicle operating cost,
economic development, and reduced shipping costs
(63). A benefits-based approach for user charging is
discussed in past PDC estimation literature (17). This
approach allocates different costs, including pavement

and bridge costs, on the basis of the benefits received by
different vehicle classes from the highway system. A
vehicle class receiving higher benefits from road-use is
made to pay a higher user fee regardless of its damage
contribution. The approach assumes that highways are
designed to provide benefits both to highway users and
non-users (that is, the society as whole). It is believed
that system-use fees based on benefits will ensure
fairness and efficiency. A major obstacle in the
implementation of this approach is the difficulty of
quantifying the non-user benefits, since the non-user
community benefits (i.e., positive externalities) are
mostly intertwined with user benefits. So far, this
approach has not been employed fully in cost-
allocation studies (17,24,61).

3.6 Cost Issues

3.6.1 Classification of Cost Incurrence

In addition to construction of new pavements,
highway agencies regularly carry out expansion and
preservation activities, including pavement widening,
reconstruction, rehabilitation, and periodic and routine
maintenance of existing pavements. The objectives
include ensuring a minimum desirable ride quality
standard, structural integrity of the highway network
and provision of adequate capacity. There is a need to
clearly define which of these costs should be considered
in PDC estimation. Different cost categories that have
been used in past research are discussed briefly in the
ensuing paragraphs:

New construction. New construction typically involves
preliminary engineering, right-of-way acquisition, grading
and earthwork, drainage, erosion control, and shoulder
and pavement structure cost. New construction is a
provision of highway capacity (17,23). In HCA, new
construction cost is allocated using the incremental
method but is not considered in PDC estimation
because it is a capacity-driven expenditure. However,
at least two past studies: Hajek et al. (35) and Ghaeli
et al. (39), unfortunately, did not make any distinction
between new construction and reconstruction.

Pavement reconstruction/replacement. A pavement
reconstruction/replacement project includes removal of
the existing pavement structure, including the subbase,
and placing a new pavement structure of equivalent
or increased strength over a prepared subgrade (64).
A pavement that is structurally damaged to an extent
that it cannot be restored cost-effectively using either
maintenance or rehabilitation, is an appropriate candi-
date for reconstruction/replacement. The new pavement
may have wider lanes or a different number of lanes
compared with the original pavement. Also, the final cost
may include expenditures on non-pavement facilities,
including safety, grading, drainage, shoulders, and
guardrails (65). Pavement reconstruction/replacement

TABLE 3.2
PDC Estimation Using HDM (22)

Vehicle PDC (Cents/Mile)—2004 Constant $

Bus 0.025

Heavy truck 0.241

Light truck 0.003

Car 0.003

Pick-up 0.0
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is a strength-driven expenditure and therefore appro-
priate for use in PDC estimation.

Pavement widening. Widening of an existing pavement
is carried out either to improve safety or to enhance
highway capacity and includes widening shoulders,
improving curve alignment, and providing medians
between opposing traffic. Also, pavement widening at
curved sections can help to improve sight distance lateral
clearance (17,66,67). Pavement widening does not add or
restore structural capacity; therefore, it is treated as a
capacity-driven expenditure and is typically not considered
in PDC estimation.

Rehabilitation. Rehabilitation is the structural or
functional enhancement of an in-service pavement
with the purpose of extending service life, arresting
pavement deterioration, and improving pavement
condition and ride quality (68). The pavement work
associated with rehabilitation projects may include
milling of the existing pavement, PCCP slab reduction,
the placement of an overlay, or a combination of these
work activities (64). Rehabilitation cost was considered
by all past PDC estimation studies, irrespective of the
methodology used.

Maintenance. This is a set of activities carried out to
address surface defects and to prolong pavement life by
slowing its rate of deterioration. It consists of periodic
(preventive) and routine maintenance. Periodic mainte-
nance, which is a non-structural enhancement of
existing pavement, can involve functional overlays
(e.g., thin HMA overlay). Routine maintenance is the
day-to-day activities and is comprised of routine
preventive maintenance (e.g., crack sealing), routine
corrective maintenance (e.g., patching) performed to
prevent pavement deterioration (69). Most PDC
estimation studies excluded maintenance cost entirely,
particularly, periodic maintenance. Only those studies
by Martin (34); Hajek et al. (35); Li and Sinha (36); and
Ghaeli et al. (39) considered periodic maintenance cost.
While Newbery (49); Small et al. (50); Vitaliano and
Held (52); TRB (53); and Lindberg (54) excluded
both periodic and routine maintenance as well as
reconstruction cost. Some other studies considered
maintenance but often did not provide explicit details
on what comprised maintenance cost (33,40,41,46,47).
For accurate estimation of PDC, both periodic and
routine maintenance cost should be considered.

3.6.2 Purpose of Cost Incurrence (Capacity vs. Strength
Expenditure)

For PDC estimation, there is a need to have a clear
distinction between the costs that are incurred to
strengthen the pavement structure and those that are
incurred to enhance capacity. Overall pavement expendi-
ture comprises new pavement construction, reconstruc-
tion with added lanes, reconstruction, major widening,
minor widening, rehabilitation, and periodic and routine

maintenance (17). When new pavements are constructed
or lanes are added to existing highways or some
widening project is undertaken, the main purpose is to
relieve congestion, improve level of service and road
safety, and provide enhanced travel conditions. In the
1997 federal HCA study, expenditures for new con-
struction, reconstruction with added lanes, and widen-
ing projects were considered as capacity-driven
expenditure and were allocated on the basis of the
VMT, weighted by a passenger car equivalent (PCE).
On the other hand, reconstruction, rehabilitation, and
periodic and routine maintenance are expenditures due
to direct pavement loading and are treated as strength-
driven expenditures. These expenditures have been
allocated on the basis of the contribution of each vehicle
class to different pavement distresses in past federal
HCA studies (17,21). All past PDC estimation studies
have failed to explicitly define which costs should be
included in PDC estimates; therefore, none of the past
PDC estimation studies included all of the strength-
driven expenditures for PDC estimation. Past PDC
estimation studies either completely excluded some
strength-driven expenditure from PDC estimation
(41,46–50,52–54) or failed to distinguish between
strength- and capacity-driven expenditures (35,39).

3.6.3 Attributable vs. Non-attributable (Load vs. Non-load)
Costs

Attributable costs are those costs that can be
allocated to different vehicle classes as per their road
damage contributions and vary across different vehicles
due to vehicle weight differences. Non-attributable
costs are the common costs that are due to climate,
weather, aging of the pavement structure, application
of deicing salts, and other factors that are not related to
vehicle loading (23). In PDC estimation, the purpose is
to find the load-related share of pavement damage due
to different vehicle classes; therefore, pavement costs
are separated into load- and non-load-related cate-
gories. Besides studies by Small et al. (50); Martin (34);
and Li and Sinha (36), no other study explicitly
recognized this dichotomy of cost by separating the
attributable and non-attributable costs.

3.7 Road-use Measure

The road-use measure is a traffic variable used for
reporting PDC per unit of road use. Commonly-used
road use measures include vehicle-mile, mile/year,
GVW-mile, axle-mile, and ESAL-mile. Gibby et al.
(33), and Liu et al. (47) used $/mile/year; Herry and
Sedlacek (40), Link (43), and Schreyer et al. (41) used $/
vehicle-mile; while Haraldsson (46) used Vehicle-Km.
Newbery (49), Small et al. (50), Vitaliano and Held (52),
Hajek et al. (35), and Li and Sinha (36) used ESAL-
mile. The issues associated with the use of different
road-use measures are as follows:

N Vehicle-mile: If vehicle-mile is used as the road-use
measure for PDC estimation, the practical issue of
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non-homogeneity arises because this measure assumes
implicitly that the same amount of damage is inflicted by
each vehicle irrespective of its weight or class. Thus,
studies that estimated unit PDC in terms of $/vehicle-mile
do not provide results that can be considered equitable.

N Mile/year: Gibby et al. (33) and Liu et al. (47) estimated
PDC in terms of $/mile/year. This road-use measure does
not differentiate between different vehicle classes. For
example, Liu et al. (47) estimated a PDC of $1,727 per
mile per year attributed to the beef industry. This road-
use measure provides general information but provides
no information based on vehicle weight or class.

N GVW-mile: Martin (34) estimated PDC in terms of
GVW-mile. This road-use measure has an issue of equity:
it implicitly assumes that two vehicles having the same
weight but different axle configurations inflict the same
damage, and thus should pay the same cost, but this is
not necessarily so.

N Axle weight-mile: Alison and Walton (60) used axle load
per mile as the road-use measure for PDC estimation. This
approach would assume that a 100% increase in axle weight
could cause a 100% increase in pavement damage. However,
the relationship between axle loading and pavement
deterioration is non-linear and is typically characterized by
the so-called ‘‘fourth-power law’’ (70,71). Therefore, this
road-use measure can result in equity issues.

N ESAL-mile: This road measure used by most past studies
is the most appropriate road-use measure because it
assigns user charges to individual vehicles in direct
proportion to the pavement damage they cause.

3.8 Evolution of Pavement Design and Consequences on
PDC Estimation

Pavement deterioration is a complex process that is
influenced by a number of factors including pavement
layer types and thicknesses, geotechnical characteristics
of the underlying soil, climatic conditions, maintenance
practices, traffic loading, and dynamic interactions
between vehicle loads and the pavement. Pavement
loading is the most important factor in pavement design
(45,53). PDC estimation approaches that involve the use
of pavement design procedures depend heavily on the
accuracy of traffic estimates. For accurate estimation of
traffic loading on a pavement structure, there is a need
to use the appropriate unit of traffic loading. PDC
estimation depends heavily on how the pavement was
designed initially. For this reason, any changes or
refinements in pavement design procedures over the
years can have a direct impact on PDC estimation. The
traditional approach uses the ESAL concept to convert
loading from different axles to a standard axle (72),
while MEPDG considers traffic in terms of load spectra
instead of ESALs. The evolution of pavement design
and its use in PDC estimation are discussed in the next
section of this chapter.

3.8.1 AASHTO Guide for Design of Pavement
Structures

The AASHTO road test, which was conducted in
1958–1962 in Ottawa, Illinois, is one of the most
important highway design experiments ever undertaken.

This experiment involved the measurement of ESALs
for pavement design purposes. The ESAL is the key
component of pavement design using AASHTO proce-
dures. There have been a few modifications to the
original design procedure to facilitate the incorporation
of new research findings and these changes have led to
improved pavement design. The latest such effort was
the 1993 AASHTO Design Guide (72) which helps
engineers to design new and rehabilitated pavements.
The ESAL concept is used to convert axles with
different loads and configurations to a standard axle
of 18 kip. In other words, the ESAL concept helps in
converting the damage to pavements from different axle
loads (vehicles having single, tandem, or tridem axles) to
the equivalent damage that would be caused by a
standard axle of 18,000 lbs. LEF is the ratio of the
damaging effect of a non-standard axle to that of a
standard axle load (70–72). LEF is then defined as:

LEF~
W18

Wx

� 	
ð3:25Þ

Where, W18 and Wx are the number of repetitions of
a standard axle (18 Kip) and a given axle load
respectively that attain the same serviceability level.

The following regression equation derived from the
AASHTO road test for flexible pavements can be used
to determine W18/Wx:

log
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�
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The number of ESALs can then be computed as
follows:

ESAL~n � LEF ð3:29Þ

Where, LEF is the equivalent number of ESALs for a
certain combination of weight and axles.

Deacon (73) conducted theoretical analysis and proved
that it is reasonable to assume that tensile strains are
directly proportional to axle weights and developed the
well-known relationship which says that damage caused
to the pavement by a given axle is proportional to the
fourth-power of the axle weight. Using the fourth-power
law, the LEF can be expressed as:

LEF~
Wi

Ws

� 	4

ð3:30Þ

Where, Ws and Wi are the weights of a standard axle
and a given axle, respectively.
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The LEF determined using fourth-power law
expresses the relationship between loading and pave-
ment deterioration in terms of the present serviceability
index (PSI). For developing the AASHTO LEF, the
variables used are: axle load, axle configuration (single,
tandem), structural number for flexible pavements, slab
thickness for rigid pavements, and terminal service-
ability (74). Different researchers argue that the
AASHTO LEF is based on empirical models which
are not valid outside the scope of the material, climatic
conditions, and vehicle characteristics used for the
AASHTO road test. Super-single tires, new suspension
systems, new axle configurations, higher tire pressures,
composite pavements, new pavement materials, and
advanced statistical techniques have raised concerns
about the validity/accuracy of AASHTO LEF (74).

In light of these concerns, past researchers have
explored the use of different methodologies to re-
estimate LEF using either the AASHTO road test data
or data from specific states/regions. Small et al. (50),
using data from the AASHTO road test, estimated a
less steep relationship between pavement life and
pavement loading. Their study results showed a
relationship close to the third power rather than the
fourth power. Arguing against the use of some fixed/
standard power, Hajek (75) developed a general LEF
that is independent of axle configuration and pavement
characteristics and obtained the 3.8th instead of the
standard fourth power. Huhtala et al. (76), in studying
the effect of tire pressure on road pavements, estimated
that the power value of the LEF exponent ranges
between 1.80 and 6.68 depending upon the selected
performance indicator. When the authors used survival
analysis techniques, their study results showed a
relationship close to third (3.24) rather than fourth
power for the cracking index as the performance
indicator. Weissmann et al. (77), using a Weibull
distribution, estimated an exponent power closer to 3.
Not long thereafter, Hudson et al. (78), using data from
individual loops of the AASHTO road test, found that
the LEF exponent ranged from 2.5 to 6.

The Organization for Economic Cooperation and
Development (OECD) carried out a full-scale acceler-
ated pavement test in the French Central Laboratory of
Roads and Bridge Projects, and evaluated the perfor-
mance of different pavement structures under loading.
Using rutting as the performance indicator, the
exponent power was found to vary from 1.47 to 5.74
(79). In another study that used the same performance
indicator, Archilla and Madanat (80), using data from
the AASHTO road test, developed a pavement
deterioration model and obtained an exponent power
of 2.98 and 3.89 for single and tandem axles,
respectively. De Ponte et al. (81) used an accelerated
pavement testing facility in New Zealand to study
pavement wear due to increased axle loading and its
ultimate implications on pavement damage cost estima-
tion. Four different pavement sections with different
base course material were tested. Using permanent
vertical deformation as the performance indicator, the

exponent value was found to range from 1 to 3. Prozzi
and Madanat (82) estimated a pavement performance
model using experimental data from the AASHTO
road test and field data from the Minnesota Road
Research Project and obtained an exponent power of
3.85 using roughness as the performance indicator.

3.8.2 SHRP Evaluation of AASHTO Design Equations

The design accuracy of new and rehabilitated
pavements that were constructed using AASHTO
design procedures was evaluated using data from the
Strategic Highway Research Program (SHRP) Long-
Term Pavement Performance (LTPP) in-service flexible
and rigid pavement test sections (83). Data from 244
flexible and 120 rigid in-service pavement sections were
used for the analysis. The study results suggested that
there were inadequacies in the AASHTO flexible
pavement design equations in predicting pavement
performance. The study found that the ESAL estimates
that would cause a certain loss of serviceability, as
predicted by the AASHTO equations, exceeded the
actual observed values. The study also found that the
threshold level (2.5 PSI), which was established during
the AASHTO road test, is not very consistent with the
actual rehabilitation and maintenance practices of
highway agencies. In fact, pavements are typically not
left to deteriorate to such a level and agency decisions
to undertake maintenance or rehabilitation are typically
made at higher PSIs (. 2.5) (83).

In the LTPP experiment, data from in-service test
sections comprising 54 jointed plain concrete pave-
ments (JPCP), 34 jointed reinforced concrete pavements
(JRCP), and 32 continuously-reinforced concrete pave-
ments (CRCP) with diverse traffic and climatic condi-
tions, provided a unique opportunity to study
AASHTO’s rigid pavement design equations. The
analysis results revealed that the original AASHTO
design equations overestimated the number of ESALs
that would cause a given drop in PSI loss. However, the
study stated that the 1993 AASHTO design equations
(72), which have been modified over the years, provide
somewhat unbiased results, and the predicted and
observed ESALs that cause a given drop in PSI loss,
were not very different in value. Similar findings were
obtained when the data from rigid pavements were
analyzed by dividing the dataset into wet freeze, wet
non-freeze, dry freeze, and dry non-freeze regions (83).

The LTPP study provided a number of recommen-
dations to improve the design equation and recom-
mended replacing the PSI concept with individual
distresses. This recommendation was based on the
argument that instead of a composite pavement
performance indicator which lumps all distresses
together, individual performance indicators (such as
IRI, rut depth, and cracking index) would help in
establishing direct relationships between individual
distresses and the loss in pavement performance.
Thus, using individual distresses, it will be possible to
pinpoint whether pavement is deteriorating due to
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increased roughness, rutting, or cracking. Individual
distress equations were developed for increases in
roughness, rutting, and transverse (thermal) cracking.
The equations for other performance measures, such as
alligator cracking and loss of friction, could not be
developed due to the unavailability of sufficient data.
The general form of the developed equations is:

Z~ND10E ð3:31Þ

Where: Z 5 Total change in distress during a
specified period of time

N 5 Cumulative ESALs in 1000’s

D~d0zd1X1zd2X2z . . . . . . . . . . . . . . . . . . zdnXn

E~e0ze1X1ze2X2z . . . . . . . . . . . . . . . . . . zenXn

X1, X2…Xn are the pavement design, construction
standard and climate related parameters.

The distress equations were developed for predicting
different distress levels and the use of these equations
for designing layer thicknesses was not intended.
However, having established the allowable distress
threshold and by defining some new variables, these
equations can be transformed to predict the required
layer thickness as follows:

XT~
log10

Z
ND

� �� �
{EX

ET

ð3:32Þ

Where: XT 5 Thickness of base or hot mix asphalt
concrete

EX~e0ze1X1ze2X2z . . . . . . . . . . . . . . . . . . zenXneTXT

ET 5 coefficient of the term CiXi that includes the
layer thickness of interest XT

All other variables are as defined previously.

3.8.3 Mechanistic-Empirical Pavement Design Guide
(MEPDG)

Pavement engineers continue to strive for an effective
analytical tool for design and analysis of pavement
structures, and the latest development in that regard is
the MEPDG. The MEPDG uses refined procedures as
compared to AASHTO 1993 and its earlier versions,
which relied heavily on the performance equations,
developed from the AASHTO road test data in the late
1950s and early 1960s. Extensive research has been
carried out for many years through the National
Cooperative Highway Research Program (NCHRP)
to develop a comprehensive guide for design of new
pavements and rehabilitated structures (84). The
MEPDG is in fact a gradual shift from the traditional
empirical approach to the mechanistic approach.

The mechanistic-empirical design procedure uses
both mathematical (mechanistic) and empirical mod-
els. Mathematical models or structural response
models are used to compute critical stress, strain,

and deflection in the pavement structure due to traffic
and climatic loading. Climatic loading of pavements
may be associated with a direct effect, such as strain
due to thermal expansion/contraction, or indirect
effects due to changes in material properties including
material stiffness resulting from moisture effects. The
mechanistic analysis relates the pavement response
and the total effect of environment and loading.
Common structural response models are based on
finite element model application (rigid pavements) and
multilayer liner elastic theory (flexible pavements)
(84,85). Structural response models help to compute
critical stress and/or strain values, such as tensile
horizontal strain at the bottom of the hot-mix asphalt
(HMA) layer and the compressive vertical stress within
HMA for prediction of fatigue cracking and rutting,
respectively.

In order to replicate the field conditions, MEPDG
has the ability to accumulate the pavement damage on
a bi-weekly or monthly basis, depending on the way
climatic changes occur and the effect of the material
properties at the project location. Thus, the pavement
damage is simulated over a continuous time period
load-by-load. The cumulative damage or distress is
computed by adding the incremental distress or damage
during each analysis period (two or four weeks).
Performance prediction models or calibrated transfer
functions (the empirical part of the MEPDG) convert
the cumulative damage to physical cracking or rutting.
Performance prediction models have been estimated
using data from the LTPP database and other similar
sources for a wide range of traffic and climatic
conditions (84,85).

The basic difference between empirical and mechan-
istic design is the way traffic is considered for pavement
design. Empirical pavement design procedures use
ESALs as the traffic variable to convert axles with
different loads to equivalent loads using LEF. The new
design guide uses load spectra (axle load distribution)
for single, tandem, tridem, and quad axles using
detailed traffic data, including initial two-way AADT
by direction and lane, traffic volume adjustment
factors, axle load distribution. The traffic volume using
the forecast data for design life determines the total
number of axle application for each axle type. Damage
and distress prediction is carried out using the total
number of axle applications. The pavement response
model also uses data relating to axle width, tire
pressure, and tire and axle spacing to compute different
distresses.

The MEPDG is capable of carrying out the analysis
for new pavements, rehabilitation treatments, and
composite pavements. The impact of climate on
material response has been addressed by establishing
a link between climatic conditions and a material
library. The material characterization model has been
incorporated in the design; this enables pavement
engineers to analyze the efficiency of new materials,
including new binders, recycled material, and uncon-
ventional gradations of aggregates. Another innovative

23Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/01



feature in the new design guide is its ability to
accumulate the pavement damage on a bi-weekly or
monthly basis, thus providing a fairly reliable estimate
of when rehabilitation will be needed.

The MEPDG uses three hierarchical levels for data
inputs (Figure 3.6). The use of hierarchical levels of
inputs ensures that the level of effort is consistent with
the importance of the project. Traffic, materials and
environmental inputs each have inbuilt provisions for
selecting one of three hierarchical levels. Level 1 input
uses refined data for pavement structure analysis and
involves comprehensive testing. Characterization of
traffic using WIM-collected data is part of Level 1
input. Level 2 input is an intermediate accuracy
category where inputs are estimated through correla-
tion or some limited testing. Results of tests performed
on binders, aggregate gradation, and mix properties can
be used for estimation of asphalt concrete modulus.
Level 3 has the lowest accuracy and involves little or no
testing. The inputs are regional or national default
values selected by the user.

The MEPDG provides the opportunity to design and
analyze pavements under varying traffic and climatic
conditions using axle load spectra for each vehicle class.

An effort was made by Hong et al. (58) to compare the
impact of different vehicle classes for highway con-
struction cost allocation using the concept of axle load
spectra. The authors used data from a single WIM
station and simulated the pavement damage by
different vehicle classes. The percentages of construc-
tion cost share across vehicle classes were estimated as
the ratio of the number of repetitions to failure for
selected pavement sections by all vehicle classes to the
number of repetitions to failure by the vehicle class in
question. The MEPDG can be used to estimate vehicle
class share as demonstrated by Hong et al. (58) but it is
unable to provide PDC estimates for individual vehicles
with varying GVWs and axle configurations. Also,
Alison (59) argued that vehicle-based load equivalency
may be obtained using typical axle loads for individual
vehicles and recording the number of repetitions to
failure; however, no such solution exists for individual
axle loads. Recently, Bordelon et al. (86,87) examined
whether the ESALs concept could still be used instead
of load spectra for jointed plain concrete pavements
(JPCP) without sacrificing the slab thickness accuracy.
The authors found that there were insignificant
differences in pavement slab thickness between the

Figure 3.6 Mechanistic-empirical pavement design procedure (84).
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two design methods and recommended that the Illinois
Department of Transportation continue to use ESAL
concept for JPCP design.

3.9 Discussion and Chapter Summary

The detailed review of the literature and state-of-the-
art of pavement damage cost estimation provided vital
information for the development of a methodology for
estimating pavement damage cost that incorporates the
actual practices of an agency. The general body of
literature lacks a pavement damage cost estimation
methodology that appropriately considers all the costs
associated with pavement damage repair; namely,
reconstruction, rehabilitation, and periodic and routine
maintenance. Most past studies used only rehabilitation
and maintenance cost but did not consider reconstruc-
tion cost. A few studies considered reconstruction cost
but failed to incorporate agency practices for rehabili-
tation and maintenance.

3.9.1 Summary and Major Conclusions from HCA
Studies

Table 3.3 summarizes the features of prominent
studies that estimated PDC as part of HCA studies.
The HCA studies had the primary objective of evaluat-
ing the equity and efficiency of federal highway user
charges based on the costs assigned to different vehicle
classes (17). The major issue with most HCA studies is

that while estimating the cost responsibility factor for
different vehicle classes, the allocated costs are not
decomposed by the capacity-driven and strength-driven
expenditures which reflect an agency’s objective for
carrying out any project. By failing to distinguish
between capacity-driven and strength-driven expendi-
tures, the road-user charges estimated by these studies
included costs that were not directly related to pavement
damage and thus cannot be used as a basis for
establishing road-user charges to cover the damage cost.

In allocating the load-related cost of individual cost
categories, such as periodic maintenance, the methods
used are similar to that used by HCA estimation
studies. Thus, the main difference between the HCA
and PDC estimation studies arises from the differences
in cost categories they consider in estimating the cost
responsibility and not the differences in their cost
estimation methodologies.

Another issue with past HCA studies is the variation
in attributes within each user class: vehicles are grouped
into different weight classes and equity was investigated
separately for each vehicle class. Potentially, there
could be significant variations in weight within each
vehicle class, thus giving rise to the likelihood that
certain vehicles will not be paying their fair share of
road damage cost, as duly recognized in a TRB-
sponsored study (53). To address this issue, the cost
shares could be estimated based on some commonly-
used road-use measure that varies with each vehicle
class such as ESAL-mile.

TABLE 3.3
Summary of Past HCA Studies—Methods and Cost Allocators

Study New Pavement Cost Rehabilitation and Maintenance Cost

1965 Federal HCAS Incremental method (traditional) Incremental method

NBase facility cost—VMT NVMT or incremental method

NEnhanced facility—traffic volume

increments (ESAL)

NMaintenance cost not considered

NRehab formed small part of total cost

1982 Federal HCAS Uniform removal technique (reverse

incremental method)

NBase facility—VMT

Individual distress models (consumption method)

NCost allocated on the basis of distress contribution (not

ESAL)

NEnhanced facility—traffic volume

decrements (ESAL)

NMaintenance cost not considered

1984 Indiana HCAS Thickness incremental method (pavement

thickness increments)

NBase facility—VMT

NEnhanced facility—Pavement thickness

increments (ESAL)

Aggregate damage model (performance based methodology)

NConcept of PSI-ESAL loss was introduced

NCosts estimated on the basis of proportionality

assumption

NLoad-related cost—ESAL

NReconstruction—similar to new construction NNon-load-related cost—VMT

1997 Federal HCAS Thickness incremental method (pavement

thickness increments)

NBase facility—VMT-PCE

NAPCOM—individual distress models

NLoad-related cost allocated on the basis of distress

contribution (not ESAL)

NEnhanced facility—ESAL NNon-load-related cost—VMT

2009 Oregon HCAS Incremental method NAPCOM—individual distress models

NOTE: Maint 5 maintenance; rehab 5 rehabilitation; AADT 5 annual average daily traffic; VMT 5 vehicle miles travelled.
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3.9.2 Major Conclusions–MPDC Estimation using
Empirical Approach

MPDC estimation using the empirical approach is a
two-step process. In the first step, models are estimated to
explain the MR&R costs as a function of independent
variables such as traffic, climate, pavement condition,
and pavement structure characteristics. Then, the esti-
mated models are differentiated with respect to the road-
use variable (traffic) to yield the desired marginal cost.
Past studies which have used this approach are summar-
ized in Table 3.4 and major issues with these studies are
discussed as follows:

1. Exclusion of reconstruction/routine maintenance
cost. Past studies that used this approach generally did
not consider the cost of pavement reconstruction or
routine maintenance. Thus, the output of these studies
(i.e., the estimated cost of pavement damage) was
assumed, even if implicitly, to be only for maintenance
and rehabilitation. This is an incomplete picture of real
estimates of PDC because whenever pavements reach a
very poor condition (due in part to traffic loading), they
are reconstructed; there is no reason to exclude this cost
from the costs to be borne by users.

2. Time span for the M&R cost data. In past studies
that used the empirical approach, the PDC was esti-
mated using historical maintenance and rehabilitation
(M&R) cost and traffic data associated with individual
pavement M&R activities. The total cost, which was the
dependent variable in the basic model, is the overall
M&R expenditure during a certain analysis period,
the average annual M&R expenditure, or the M&R
expenditure during one life cycle (the time between
consecutive rehabilitations or between rehabilitations
and reconstruction). The issue here is the manner of use
of data from the individual M&R activities for the
model estimation. The time interval over which the
different M&R activity costs were considered were often
not consistent with the time interval of the influence of
the factor responsible for the cost (i.e. the total traffic
and climatic loading sustained by the pavement
segment). The studies (Table 3.4) that used the total
M&R expenditures during a selected analysis period and
the average annual M&R expenditures as the dependent
variable (without regard of when the pavement segment
in question last received maintenance or rehabilitation)
were likely affected by such bias.

In the hypothetical illustration shown as Figure 3.7,
rehabilitation actions were applied to a pavement
section in years 1985 and 2000. To illustrate the issue
associated with the time span of the data, consider two
different studies carried out using the data from this
pavement section. For the purpose of PDC estimation,
Study A used data from 1988 to 1998 and thus
completely missed the rehabilitation cost. Study B used
data from 1995 to 2005 and thus included the cost of
one rehabilitation action. Both studies covered same
analysis period (10 years) and therefore the same traffic

data for this period are used for estimating the
pavement damage. However, because different costs
are considered, the two studies will yield different
results. As demonstrated by this illustration, the PDC
can be significantly influenced by the temporal incon-
sistencies in the analysis period and its relation to the
timing of the major pavement repair actions.

3. Time span for traffic data. Studies that used the
concept of MR&R expenditure during one life cycle of a
pavement for PDC estimation had the issue of traffic
estimates that were likely incorrect. For PDC estima-
tion, the cost of individual maintenance treatments
(rehabilitation and periodic maintenance) is used as the
dependent variable, and the accumulated traffic and
climate effects during one life cycle are used as the
independent variables. For model estimation, those
studies used the appropriate measure of expenditure
(the cost of the individual treatments); however, they
generally had limited information on the actual indi-
vidual treatment service lives and thus used historical
values instead. It has been shown, though, that the use of
trigger values and historical treatment service lives can
lead to error, and thus it is more appropriate to estimate
treatment service life for individual treatments for the
specific highway functional class in question, using
pavement performance data (88). Estimates of traffic
and other variables which affect PDC can become
unreliable without correct estimation of the treatment
service life. For example, suppose a study uses the
correct service life of a treatment of 10 years, while
another uses a treatment service life of 15 years. In the
first case, traffic and climate effects will span a 10-year
period; and in the second case, the traffic and climate
estimate effects will span a 15-year period. Thus, the two
studies will have the same cost data for the pavement
section but very different effects of traffic and climatic,
resulting in different cost estimates. With the advan-
cements in pavement management systems, it is
envisaged that highway agencies can overcome this
issue by estimating reliable treatment service lives for
their standard M&R treatments.

4. Road-use measure for pavement damage cost
estimation. The manner in which traffic is considered
in PDC estimation can significantly influence the
estimation results. A wide variety of traffic variables or
road-use measures have been used in past studies: mile/
year, vehicle-mile, GVW-mile, axle-mile, and ESAL-
mile. It is not the total weight of vehicles, but the weight
of individual axles that determines how much pavement
is being ‘‘consumed’’ by a vehicle (17,89). Therefore, in
reporting the PDC using an incorrect road-use measure
can result in an equity issue. Traffic variables or road-
use measures that account for individual axle weights
and the damage they inflict, such as ESAL-mile, seems
to be the most appropriate one to use.

5. Ignoring climatic effects. There are very few studies
which have considered climatic effects in PDC
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TABLE 3.4
PDC Estimation Studies that Used the Empirical Approach

Study

Independent

Variable/Cost Model

Functional Form

Traffic Variable

and Performance

Indicator

Maintenance

Activities/Data

Details

Climate/Age

Variable for

Estimation Cost Estimates

Gibby et al. (33) Total maint expend

over 3yrs (for 1

mile section)

Cobb-Douglas

AADT (cars &

small trucks)

AADT trucks

(.5axles)

Total maint cost

California

(1984–1987)

Temperature

Age

Trucks—$7.60/m/yr

Cars—$0.08/m/yr

Martin (34) Annual routine,

periodic, & total

maint expend

ESAL, GVW,

PCU, AADT

Routine, periodic, and

total maint expend

Data from Australia

Age 50% (¡7) load-related expend

50% (¡7) load-related expend

Linear and non-linear

Hajek at al. (35) Total life-cycle cost

over 60 yr

analysis period

ESAL Construction, maint.

& rehab

Ontario data

Two climatic

regions

$0.0025–0.597/VKm (New

pavements)

$0.0013–0.307/VKm (in-service

pavements)

Li & Sinha

(36–38)

Rehab and periodic

maint expend

during one life cycle

Annual routine

maint expend

OLS & system of

equations

ESAL

IRI

Routine maint, rehab

& periodic maint

expend

Indiana (1994–1998)

872 highway segments

Age

Freeze index

Temperature

$0.0143–$0.024 per ESAL-mi

28%,78%, and 38% load-related

expend for flexible, rigid and

composite pavements

respectively

Ghaeli et al. (39) Total life-cycle cost

over 30 yr analysis

period

ESAL Construction, maint.

& rehab

Ontario data

Two climatic

regions

No estimates for PDC

Herry &

Sedlacek (40)

Annual maint &

rehab expend

AADT trucks

& cars

Annual maint &

rehab cost

— J0.0016($.0017)/Vkm

OLS Gross tons

Total axle load

Austria (1987–2004)

46 highway segments

Schreyer

et al. (41)

Total maint & rehab

expend 1985–1988

Log-linear

Total VKm

Total weight-

distance

Total ESAL

Total maint & rehab

Sweden (1985–1998)

127 highway segments

— J0.00046 ($0.0005) per VKm

(cars)

J0.044 ($0.0472)/VKm (trucks)

Link (43) Total rehab expend

per Km (1980–1999)

Log-linear

AADT cars

AADT trucks

Rehab cost

Germany data

1980–1999

Age J0.008–1.87 ($0.009–2)/VKm

Ozbay et al.

(2007) (44)

Maint & rehab expend

per lane-mile

ESAL Maint & rehab

2004–2006

— No estimates for PDC

Non-linear

Haraldsson (46) Total maint expend

for a region

Non-linear

Heavy vehicle

Km

Maint & rehab

Sweden (1998–2002)

145 small regions

— 0.22 SEK ($0.0305)/heavy VKm

Liu et al. (47) Annual average maint

expend

AASHTO equation

HERS decay functions

ESAL

PSR loss

Maint expend

Kansas (1985–2003)

127 highway segments

HERS decay

functions (non-

load damage)

$1727/mi/yr

NOTE: Maint 5 maintenance; rehab 5 rehabilitation; VKm 5 vehicle kilometer; AADT 5 annual average daily traffic; PI 5 pavement
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estimation. This has been an oversight as past research
indicates that climate has a significant impact on
pavement damage (23,34); therefore it is not
appropriate to exclude it completely.

6. Miscellaneous issues with studies that used
simulated data. Hajek et al. (35) and Ghaeli et al. (39)
estimated PDC by developing models that used
synthesized data from specified MR&R schedules
(treatment type and timings) over life-cycle periods.
Explicit details of the constituent MR&R activities and
decision criteria for the treatment applications were not
provided. For the MR&R schedule, Hajek et al. (35)
escalated the costs by 25% to account for overrun. It is
not certain that this was appropriate. Also, the study
did not express the cost in constant dollars as
recommended in the literature (90). Both studies did
not distinguish between strength- and capacity-driven
expenditure as they treated new construction and
reconstruction costs without distinction. Ghaeli et al.
(39) used a 30-year analysis period, which may be
considered inadequate. For life-cycle cost analysis
pavement investment, a minimum analysis period of
35 years has been recommended (90).

3.9.3 Major Conclusions—MPDC Estimation Using the
Engineering Approach

In this approach, using theoretical knowledge, a unit
dimension of the infrastructure (one lane-mile) is
analyzed and a repair cost vs. usage relationship is
established. Then the results are generalized for the
entire network. Features of past studies that used this
approach are summarized in Table 3.5 and the major
issues with these studies are as follows:

1. Reconstruction and maintenance cost not considered.
Studies that used this approach generally failed to account
for routine maintenance and reconstruction cost and thus
underestimated the cost of pavement damage. Therefore,
all the results reported by past studies (Table 3.6)
represent the pavement rehabilitation cost only and do
not provide a comprehensive estimate of true PDC.

2. MPDC estimation based on optimal maintenance
scenario. This approach estimates PDC on the basis of
the assumption that a pavement promptly receives a
specified treatment whenever it deteriorates to a certain
threshold, thus presenting an optimal maintenance
scenario. In reality, highway agency decisions may not
be optimal due to insufficient funds at times for highway
maintenance. Thus, the estimated cost associated with
the optimal maintenance scenario does not represent the
expenditure actually incurred by the highway agency;
therefore, it is not appropriate to pass on such
hypothetical expenditure to the users.

3.9.4 Major Conclusions from Miscellaneous Other
Approaches

Apart from the two main approaches (empirical and
engineering), a number of other approaches have been
used to estimate the PDC per unit of road use. The
HDM Model, which uses a pavement management
system, can be used to estimate pavement deterioration
cost (wear and damage), and user cost (road damage
externality). This method is data intensive because
detailed pavement and traffic data are needed for
accurate estimation of PDC. Secondly, it needs to be
calibrated for local conditions (61). Studies by Hewitt et
al. (55) and Roberts and Djakfar (56) were focused
more on investigating the impact of a change in GVW
limits and not essentially quantifying the PDC for each
vehicle class. Parker and Hussain (57) proposed a
methodology that quantified the pavement damage
caused by vehicles with different gross weights, number
of axles, tire pressures, speeds, and load distribution on
individual axles. Hong et al. (58) proposed a site-
specific methodology for load-related pavement con-
struction cost estimation using the MEPDG and
provided relative pavement damage in terms of truck
passes by different truck classes, but they did not report
their findings in monetary values. Alison and Walton
(60) proposed a theoretical framework for charging
commercial vehicles at toll facilities on the basis of axle
weights and number of axles rather than using the
operating weight.

Figure 3.7 Hypothetical timelines to illustrate the impact of mismatch between time span of the MR&R data and analysis
periods.
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TABLE 3.6
Studies Using Miscellaneous Methods for PDC Estimation

Study

Maintenance

Activities/Data

Traffic

Variable

Performance

Indicator Climate Effect Cost Estimates

Hewitt et al. (55) Maint & rehab cost ESAL — Not considered No estimates for PDC

20 yr analysis period

Roberts and Djakfar (56) Maint & rehab cost ESAL — Not considered No estimates for PDC

Difference in cost for

alternative scenarios

1999–1918

Parker & Hussain (57) Life-cycle maint cost

Maint data for a typical

flexible pavement in NY

Axle load

spectra

Fatigue cracking

Rutting

Considered For a truck with 5-axle,

80000 lbs GVW—$0.11/

lane-mile at avg. speed of

60 mph

Hong et al. (58) New construction Axle load

spectra

Surface rutting Considered Relative damage by single

pass of each truck class

was estimated

Alison & Walton (91) New construction

Maintenance

Debt servicing

Axle

Axle-weight

— Not considered No explicit estimates for

PDC

NOTE: Maint 5 maintenance; rehab 5 rehabilitation; PI 5 pavement performance indicator; expend 5 expenditure; PCR 5 pavement condition rating.

TABLE 3.5
MPDC Estimation Based on Engineering Approach

Study

Independent Variable

(Cost per Km or per

Mile of Road Segment)

Traffic

Variable

& PI

Maintenance

Activities/Data

Climate

Effect

Cost

Estimates

Newbery (49) Rehab cost over an

infinite planning

period

ESAL

IRI

Rehab

Tunisia data

Not considered $0.0013–0.0258/ESAL-Km

Non-linear cost model

Small et al. (50) Rehab cost over an

infinite planning

period

Non-linear cost

model

ESAL

PSI

Rehab

US data

Considered $0.0148–1.125/ESAL-Km (non-

optimal practice)

$0.0033–1.01/ESAL-Km (optimal

practice)

Vitaliano & Held (52) Rehab cost over

an infinite

planning period

ESAL

PCR

Rehab

New York data

Assumption—

50% damage

by climate

$0.030–0.742 per ESAL-mile (for a

5-Axle Truck)

Non-linear cost model

TRB (53) Rehab cost over infinite

planning period

ESAL Rehab Considered No estimates for PDC

Lindberg (54) Rehab cost over an

infinite planning

period

ESAL

Cracking

index

Rehab

Sweden data

Not considered J0.00065–0.0162 ($0.0007–0.0176)/

ESAL-Km

Non-linear cost model

Anani & Madanat (48) Rehab and periodic maint

cost over an infinite

planning period

ESAL Periodic maint

& rehab

Assumed data

Not considered No estimates for PDC

Non-linear cost model

NOTE: Maint 5 maintenance; rehab 5 rehabilitation; PI 5 pavement performance indicator; expend 5 expenditure; PCR 5 pavement condition rating.
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These studies had their respective significant con-
tributions by pointing toward new directions for
enhanced PDC estimation. However, their results are
difficult to generalize for an entire network for
equitable road user charging as they were based on
limited datasets and are unable to incorporate a
highway agency’s maintenance strategy into PDC
estimation. Studies by Parker and Hussain (57), Hong
et al. (58) and Alison and Walton (60) used site-specific
data. Therefore, the results can be useful for facilites
such as toll roads, but they have limited application for
state agencies that deal with thousands of miles of
road network characterized by wide traffic variations,
different functional classes and road surfaces and
heterogeneous vehicle mixes. Also, a maintenance
strategy for a single road segement cannot necessarily
represent the maintenance strategy used by a highway
agency for all segments of an entire network.

The literature review shows that very few studies
have adopted a comprehensive approach for PDC
estimation. Most of the studies have either used data
from a few WIM stations or considered only a single
overlay applied at regular interval. None of the studies
is based on actual MR&R practices, which are
characterized by different treatments to different
pavement surface types and at different timings. Also,
the methodology should not be for a single point or link
only and then generalized for the entire network.
Rather, it should be carried out using data from the
entire network, appropriately categorized into families
of similar characteristics. Thus, it is necessary to collect
cost, performance, and traffic data from representative
pavement sample sections in each family. Further, there
should be a clear dichotomy between strength- and
capacity-driven expenditure. For strength-driven
expenditure, the shares of load and non-load damage,
and hence, expenditure, must be established. An
appropriate time span for the analysis must be
established so that long-term expenditures, traffic and
performance trends can be established with minimum
bias. Also, an appropriate road-use measure should be
selected that is consistent with the objective of analysis
(in this case, pavement damage). Another important
issue is that all the categories, not just one or a select
few, of the costs associated with pavement damage
repair, must be considered: routine and periodic
maintenance, rehabilitation, and reconstruction. Also,
an appropriate exponent for LEF must be determined
on the basis of the agency-specified performance
indicator and threshold values for each family of
pavements under consideration. Finally, the effective-
ness of individual pavement repair treatments, on the
basis of service life, must be ascertained according to
the agency’s performance indicator and performance
threshold, for the analysis.

Having identified the gray areas in past studies, a
comprehensive methodology was developed in this
study which duly addresses the deficiencies identified
in the past literature. The proposed methodology is
presented in Chapters 4 and 5.

4. MAINTENANCE, REHABILITATION AND
RECONSTRUCTION STRATEGY
FORMULATION AND MARGINAL PAVEMENT
DAMAGE COST ESTIMATION

4.1 Introduction

The general framework developed in this study for
marginal pavement cost damage estimation using
pavement MR&R strategies over an infinite analysis
period is shown in Figure 4.1. Details of the framework
elements are discussed in this chapter. Typical (past
practice) or anticipated types and timings of MR&R
can be used to formulate long-term strategies or
schedules, for highway pavement preservation. If the
cost of each MR&R activity is known, then the overall
life-cycle cost can be calculated. Then, if the total
number of users or the extent of their use is known, this
cost can be divided among the number of users to
obtain the cost to be shared by each user.

As discussed in Chapter 3, highway MPDC has been
estimated in past studies using either empirical or so-
called ‘‘engineering’’ approaches. In the studies that
used the latter approach (33,34,36,40,41,44,46,47),
M&R expenditures and traffic data from historical
records (in pavement management system databases)
were used for estimating the MPDC. In studies that
used the ‘‘engineering’’ approach (49,50,52,54) theore-
tical analysis of a single representative pavement
segment was used to derive an expression for the
present value of recurring fixed-intensity rehabilitation
over an infinite analysis period for MPDC estimation.
Only one study, Hajek et al. (35) considered main-
tenance strategies for PDC estimation; however, it did
not provide explicit details of the constituent MR&R
activities nor did the study explain the decision criteria
for the treatment applications. The study report
provided no details on whether the developed strategies
were based on agency practice or on optimal practice.
Also, they did not distinguish between strength-driven
and capacity-driven expenditures because they did not
indicate a dichotomy between new construction and
reconstruction costs.

Further, in the costing aspects of their analysis, none
of the past studies explicitly considered the entire range
of highway pavement preservation categories, namely,
reconstruction, rehabilitation, and routine and periodic
maintenance that occur during the life cycle of a
pavement. Similarly, no past study formulated a
methodology for PDC estimation that explicitly incor-
porates practical and realistic highway agency MR&R
strategies. There seemed to be little or no realization of
the fact that for a given family and pavement design,
several alternative M&R treatments are available that
could be applied over the pavement life cycle. The total
cost of constituent M&R treatments can be estimated
and summed up to yield the total cost over the
pavement life cycle. The rest period (time between
reconstruction and the first periodic maintenance
treatment) can be estimated for different road func-
tional classes. Also, the effectiveness of periodic M&R
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treatments can be determined in terms of service life or
the time taken by a treatment to reach the threshold
condition. The total traffic and climatic effects over the
entire life cycle of a pavement can be estimated using
historical records and appropriate traffic growth
factors.

Information on the total cost of reconstruction,
rehabilitation and maintenance; rest periods; the service
life of individual treatments; and the total traffic and
climatic effect over the entire life cycle of a pavement
segment can be used to estimate the PDC per unit
traffic ($/ESAL-mile). The formulation of the PDC
estimation methodology using highway agency MR&R
strategies is discussed in the remaining sections of this
chapter.

4.2 Past Research on the Formulation of Highway
Pavement MR&R Strategies

An effective pavement preservation program speci-
fies the appropriate times at which different M&R
treatments should be applied to the pavement structure.
To establish treatment types and timings, different
studies in the past have used different timing criteria
(age or condition) and different mechanisms for
establishing these criteria levels (historical trends,
expert opinion or optimization). The commonly-used
procedures are as follows:

4.2.1 Time-based MR&R Strategy Formulation

A time-based strategy is one where treatments are
applied on the basis of pavement age. Such a strategy
usually involves the use of the treatment service life and
is also termed as a strategy based on established time
intervals (92). These intervals may be large or small
depending upon the asset age, traffic, and climate. Age
can be considered as a surrogate for accumulated
climatic and traffic loading (93). In situations where it is
difficult to collect and manage data on traffic and
condition for individual pavement segments, age-based
strategies may be considered reasonable (94).

Zimmerman et al. (95), in a study that incorporated
chip sealing, patching, and crack sealing into South
Dakota’s pavement management system, developed
various time-based strategies for pavement preserva-
tion. The life-cycle strategies were developed for
different road types and road functional classes by a
team of experts (Table 4.1).

Hicks et al. (96) investigated the case of application
of flexible pavement preventive maintenance in order to
address three main issues: (1) when and where a
preventive maintenance treatment should be used; (2)
the cost-effectiveness of different preventive mainte-
nance treatments and methodology to determine the
most effective treatments; and (3) different factors to be
considered in formulating a preventive maintenance

Figure 4.1 Framework for MPDC estimation using practical highway agency MR&R strategies.
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strategy for a particular pavement. Table 4.2 presents
the generalized optimal times Hicks et al. suggested for
applying preventive maintenance treatments to asphal-
tic concrete pavements.

Lamptey et al. (92) developed time-based strategies
for asphalt concrete and rigid pavements in Indiana.
These strategies were developed using the treatment
service life suggested by the Indiana Department of
Transportation (INDOT) Pavement Design Manual,
the responses of pavement engineers to a questionnaire
survey of the INDOT districts, and treatment service
life information synthesized from different past studies.
Figure 4.2 presents a time-based strategy developed by
Lamptey et al. (92) for new HMA pavements on the
national highway system (NHS).

Labi and Sinha (69) formulated different time-based
strategies for flexible and rigid pavements to carry out
long-term cost-effectiveness evaluation of maintenance
treatments. Each strategy consisted of rehabilitation
and preventive maintenance treatments. Table 4.3
presents a time-based strategy reported by Labi and
Sinha for a non-Interstate pavement.

Currently, INDOT uses time-based strategies for use
in life-cycle cost analysis (LCCA) to carry out assess-
ment of competing alternatives by considering pave-
ment MR&R costs only. LCCA requires reconstruction
(initial construction), rehabilitation, and maintenance
costs; interest rate; salvage value; analysis period; and
service life of the individual treatments as main inputs
(97). Table 4.4 presents the anticipated service lives of
various treatments used in LCCA as defined in the
INDOT Pavement Design Manual. INDOT has also
adopted certain guidelines for pavement M&R; and the
preventive M&R treatments guidelines adopted by
INDOT for asphalt and Portland cement concrete
(PCC) pavements respectively are discussed in Section
4.4.2 of this study. The INDOT Pavement Design
Manual recommends that, for asphalt pavements,
preventive maintenance treatments should be applied
generally to pavements with relatively low-to-moderate
cracking and IRI of less than 150 in/mi (2.370 m/Km).
For PCC pavements, there are no explicit guidelines
based on IRI or friction; however, preventive main-
tenance treatments are recommended for PCC pave-
ments with significant surface distresses (98).

4.2.2 Performance-based MR&R Strategy Formulation

In performance-based strategy formulation, the
pavement threshold condition is the deciding factor
for pavement intervention. As soon as the pavement
reaches a certain threshold condition in terms of a
selected performance indicator, an appropriate preven-
tive maintenance, rehabilitation, or reconstruction is
carried out to restore the pavement condition.
Performance-based approaches involve constant mon-
itoring of assets so that an appropriate treatment is
applied to the pavement at the appropriate time.
Pavement condition is monitored typically by highway
agencies by collecting data on performance indicators
that may be aggregate (e.g., PCR and IRI) or
disaggregate (e.g., asphalt cracking index (ACI) and
rutting index (RI)) (94).

Various studies in the past have developed perfor-
mance-based thresholds and strategies using engineer-
ing judgment and past experience (92,99). Hicks et al.
(96) presented a conceptual discussion of establishing
thresholds for various categories of treatments for
application to a pavement at different stages of its life-
cycle. Figure 4.3 provides the proposed thresholds
based on a pavement condition survey, on a scale of
1–100.

Lamptey (100) developed a performance-based
methodology for applying various preventive mainte-
nance treatments in the rehabilitation life cycle (the
time interval between two consecutive rehabilitations).
The developed project-level optimization methodology
in that study demonstrated the superior overall benefits
of applying various preventive maintenance treatments
at optimal points during the rehabilitation interval.
Integer programming was used to compare the costs
and benefits of different candidate strategies for

TABLE 4.2
General Optimal Times for Applying Selected Treatments on AC
Pavements (96)

Treatment Years

Fog seals 1–3

Crack seals 2–4

Chip seals 5–7

Slurry seals 5–7

Thin overlays (including surface recycling) 5–10

TABLE 4.1
Pavement Life-Cycle Strategies for New HMA Pavements by
Functional Class (95)

Functional Class

Year Interstate Major Arterial Minor Arterial

1

2 Crack seal Crack seal Crack seal

3 Chip seal Chip seal Chip seal

4

5

6

7 Crack seal Crack seal Crack seal

8 Chip seal Chip seal Chip seal

9

10

11

12 Crack seal

13 Chip seal Crack seal

14 Chip seal

15 Overlay

16

17 Crack seal Overlay

18 Chip seal

19 Crack seal

20 Chip seal Overlay
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preventive maintenance within the rehabilitation cycle.
The authors developed the optimization program using
performance and budgetary constraints, and formu-
lated a preventive maintenance strategy that minimized
the agency and user costs over the analysis period. A
preventive maintenance strategy developed for non-
Interstate using IRI as the performance measure and
the corresponding anticipated performance trend, is
shown in Figure 4.4.

Khurshid et al. (101) developed a methodology for
establishing optimal performance thresholds for flexible
pavement rehabilitation and periodic maintenance
treatments using data from the state of Indiana. The

cost-effectiveness analysis concept was used to develop
the optimal thresholds. The optimal thresholds were
established using agency cost only and, agency and user
cost combined; and they found that the cost-effective-
ness was lower when an intervention is applied to any
asset either too early (asset is in relatively good
condition) or too late (asset is highly deteriorated)
compared to the optimal time of application. A case
study using functional HMA overlay was used to
demonstrate that the developed optimal thresholds
(Table 4.5) represent the points where an agency
derives maximum benefit at minimum possible cost by
applying an intervention at that point. Comparison of

TABLE 4.3
Time-Based Strategy Formulation for Non-Interstate Pavements (69)

Strategy #

Overall Maintenance Scenario

Details of Strategy (Preventive Maintenance Elements)
Default Actions: Corrective

Maintenance Elements (as needed,

but 3-year intervals is assumed)Thin HMA Overlay Micro-surfacing Crack Sealing

Underdrain

Maintenance

0 — — — — —

1 — — — — Shallow patching, deep patching,

premix leveling bump planning

2 — — FA: 6 years Every year Same as above

FT: 6 years

3 — — FA: 3 years Every year Same as above

FT: 3 years

4 — FA: 6 years — Every year Same as above

FT: 6 years

5 — FA: 6 years FA: 3 years Every year Same as above

FT: 6 years FT: 3 years

6 FA: 6 years — FA: 3 years Every year Same as above

FT: 6 years FT: 3 years

7 — FA: 3 years — Every year Same as above

FT: 3 years

8 — FA: 4 years — Every year Same as above

FT: 4 years

9 — FA: 8 years FA: 3 years Every year Same as above

FT: 8 years FT: 3 years

10 FA: 9 years — 6 years after rehab or

microsurfacing

3 years after thin

overlay

Same as above

FT: 9 years

11 FA: 8 years — 6 years after rehab or

microsurfacing

Every year Same as above

FT: 6 years

12 FA: 5 years — 6 years after rehab or

microsurfacing

1 year after

microsurfacing

Same as above

FT: 5 years

FA: Age of first application, FT: Frequency thereafter (after first application).

Figure 4.2 Time-based strategy for new HMA pavement, NHS (92).
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the optimal threshold with current agency practices
revealed some variability and inconsistency in the latter.

Recently, Irfan (88) developed a methodology for
establishing optimal project-level, life-cycle M&R
strategies for flexible and rigid pavements. This was

done using mixed-integer nonlinear programming. For
determining the effectiveness of each M&R strategy,
four different objective functions were used and
effectiveness was expressed as either the area bounded
by the performance curve, the savings in annualized
user VOC due to improved pavement performance
relative to a base case, or the sum of the annualized
VOC and the agency basic routine maintenance cost
savings. For deriving the expression for effectiveness,
treatment-specific models were developed separately for
flexible and rigid pavements. The author estimated the
treatment service lives for individual treatments com-
monly used in the state of Indiana using pavement
condition and traffic data from 2001 to 2006. Cost
models were estimated to determine the cost of each
candidate M&R strategy. The study results can help an
agency to select which treatments to apply to a certain
pavement segment and at which years, for maximum
cost-effectiveness. Figure 4.5, an example of the strate-
gies developed by that study, shows that for annual
average truck traffic of 2.5 million, and an annual
average freeze index of 461 (degree-days), a thin HMA
overlay applied at year 11 and a functional HMA
overlay applied at year 20 is the optimal maintenance
strategy.

INDOT has adopted certain performance standards
for selecting the application thresholds for various
M&R treatments (see Table 4.11). The threshold
performance level of a pavement is the minimum (or
maximum) acceptable performance level below (or
above) which the pavement performance is unaccep-
table. Most agencies establish threshold values for their
M&R treatments on the basis of either expert opinion
or historical practices. More recently, studies using
Indiana data (98,101) have found that preventive
maintenance treatments should be applied when the
IRI is between 125–150 inches/mile, and rehabilitation
treatments should be applied when the IRI . 150,
which is generally consistent with current INDOT
practices.

TABLE 4.4
Recommended Design Lives for LCCA (64)

Pavement—Work Type

Design Life

(Years)

New PCCP pavement 30

PCC over existing pavement 25

HMA pavement with SMA (stone matrix asphalt) 25

HMA with SMA surface overlay on rubblized PCC 25

New full depth HMA pavement 20

HMA overlay on continuously reinforced concrete

pavement (CRCP)

20

HMA overlay on rubblized PCCP 20

HMA overlay on cracked and seated PCCP 15

HMA overlay on perpetual asphalt

Structural n/a

Functional 18

Preventive maintenance 15

HMA overlays on built-up asphalt

Structural 18

Functional 15

Preventive maintenance 9

HMA overlays on PCC

Structural 15

Functional 12

Preventive maintenance 5

HMA overlays on JRCP or JPCP

Structural 15

Functional 12

PCCP joint sealing 8

Ultrathin bonded wearing course (UBWC) 8

Microsurfacing 8

Concrete pavement rehabilitation (CPR) techniques 6

Chip seal 4

Asphalt crack sealing, route and seal 3

Asphalt crack sealing 1

Figure 4.3 Performance thresholds for maintenance and rehabilitation treatments (96).
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Figure 4.4 Surface roughness trend corresponding to an optimal project-level preventive maintenance strategy (100).

Figure 4.5 Optimal M&R strategy for flexible Interstate pavements (88).

TABLE 4.5
Optimal Thresholds for Functional HMA Overlay (101)

Highway Functional Class

OTH Based on Non-Monetized Benefits (AOC) OTH Based on Overall Annualized Costs (EUAC)

IRI (in/mile) PCR Rut IRI (in/mile) PCR Rut

Interstate 145 74 7.1 151 78 6.1

NHS (NIS) 151 72 7.9 156 75 7.1

NNHS 157 70 9.1 162 73 8.2

NOTE: OTH 5 optimal threshold; AOC 5 area over the curve; EUAC 5 equivalent uniform annual cost.
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4.2.3 Use of Decision Trees and Matrices for MR&R
Strategy Formulation

Condition-based decision trees and matrices are a set
of rules and criteria which are established using either
expert opinion or past experience in pavement manage-
ment. These are used for selecting appropriate M&R
treatment strategies and have been developed by a
number of studies in the past (102,103). By incorporat-
ing a set of criteria, decision trees help to select an
appropriate pavement maintenance or rehabilitation
treatment under a specific set of conditions such as
pavement type and its distress level, traffic volume and
functional class of highway (96). Decision trees and
matrices are based primarily on the decision process
historically used by a highway agency (92). The major
advantages of decision trees and matrices are: (1) they
are based on decision practices used by a highway
agency; and (2) they incorporate the experience of
pavement experts. However, this method of strategy
formulation has certain disadvantages: (1) they incor-
porate only those treatments that might have worked
well at a particular highway agency in past, and may
not be an effective guideline for new and improved
treatments that have been used more recently; and (2)
the decision process cannot incorporate all the factors/
distress types that may influence treatment service life
and strategy formulation (69,92,96,97).

In 2001, the Minnesota Department of Transportation
(MnDOT) developed decision trees for treatment applica-
tions using PSR and structural condition as performance
indicators (102). Besides decision trees, tables for trigger
values of PSR and structural condition were also
prepared to facilitate decision-making.

The Alberta Infrastructure & Transportation (99)
developed guidelines for pavement preservation in
2006. In that study, decision trees and matrices for
various categories of pavement treatments were devel-
oped. The decision matrices for low-cost preventive
maintenance treatments were developed on the basis of
IRI and the severity and extent of pavement distress
(cracking). The thresholds for high-cost rehabilitation
treatments were based on IRI, cracking thresholds, and
structural strength requirements. The threshold values
of IRI and cracking were established using past practice
and expert opinion.

Ahmad (103), using age and the performance
threshold from the INDOT pavement management
system, developed a decision matrix (Figure 4.6) for
formulating a pavement M&R strategy.

Ahmad’s study presented a basic approach to
combine expert opinion and distress indices to formulate
strategies. For strategy formulation, a 40-year life cycle
was used and the selected solutions were segregated into
three subgroups: the cycles for preventive maintenance,
functional rehabilitation and structural rehabilitation.

Wade et al. (104), in a South Dakota study designed
to evaluate the suitability of chip seal for high-volume
high-speed roads, developed a decision matrix for
selecting surface treatments for rural and urban roads.

Using threshold values for significant pavement dis-
tresses, the criteria for selecting appropriate pavement
maintenance treatments were developed. The threshold
values used for developing a decision matrix were
established using past experience and expert opinion. A
sample decision matrix for selecting surface treatments
for rural roads is presented in Table 4.6.

4.2.4 MR&R Strategy Formulation in Past PDC
Estimation Studies

Different studies in the past have used data from
simulated MR&R strategies for MPDC estimation. In
the time-based simulated strategies, treatment types and
timing were based either on expert opinion or agency
practice. Strategies were formulated over either a finite
or infinite analysis period. The typical MR&R strategy
formulation techniques used in past studies are
discussed in the following paragraphs.

4.2.4.1 MR&R strategy formulation using an infinite
analysis period. The literature review showed that for
MR&R strategy formulations, past MPDC studies used
an infinite analysis period, and assumed the application of
a single type of rehabilitation treatment (resurfacing of a
fixed thickness) to the pavement after fixed time intervals.
Several studies did not consider the costs of reconstruction,
and of periodic and/or routine maintenance. Also,
practical M&R strategies used at highway agencies were
not considered. The general procedure used by such
studies for strategy formulation is as follows.

Consider a single lane of a flexible pavement for
which a highway agency uses an overlay of constant
intensity. Assume that the pavement receives an overlay
in a perpetual cycle whenever it deteriorates to a
predetermined threshold level (Figure 4.7). Let C 5

Unit cost ($/Lane-mile) for overlay used by highway
agency; Q 5 Annual traffic loading of a given
pavement segment in ESAL; D 5 Pavement durability
(number of ESAL to failure).

Then the interval between any two successive
resurfacing actions (rehabilitation), T is:

T~D=Q ð4:1Þ

The real compound interest rate is ‘‘r,’’ and present
value of all future overlays is ‘‘P.’’ An overlay is assumed
to be just laid (pavement is in new condition). The interest
rate per compounding period m (number of interest
periods in a year) is r/m. The continuously-compounded
value, Z, of a single pavement C after every T:

Z~
C

1zr=mð ÞmT
ð4:2Þ

Z~
C

1zr=mð Þ m=rð ÞrT
ð4:3Þ

When m approaches ‘, 1/m approaches zero, there-

fore 1zr=mð Þ m=rð Þ
approaches e.
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Thus, the present worth of a continuously-com-
pounded single pavement C after T years is:

Z~
C

erT
ð4:4Þ

Similarly, the present worth, P, of all future overlays:

P~
C1

erT 1ð Þz
C2

erT 2ð Þz
C3

erT 3ð Þz

. . . . . . . . . . . . . . . . . . . . .
C1

erT nð Þ

ð4:5Þ

As these studies assumed that a highway agency uses
an overlay of constant intensity, Equation 4.5 can be
rewritten as:

P~C
1

erT 1ð Þz
1

erT 2ð Þz
1

erT 3ð Þz

�

. . . . . . . . . . . . . . . . . . . . .
1

erT nð Þ

� ð4:6Þ

P~C
X?
n~1

1

erT nð Þ

� �
ð4:7Þ

Assuming that (rT) is strictly negative and finite, the
finite geometric series converges and can be re-written as:

P~C
X?
n~1

e{rT

 �n ð4:8Þ

P~C
e{rT

1{e{rTð Þ

� �
ð4:9Þ

P~
C

erT{1ð Þ ð4:10Þ

If P is the present worth of all future overlays, using
continuous discounting, the annualized cost (AC) of all
future overlays is given by:

AC~P er{1ð Þ ð4:11Þ

Y5Yes, N5No, T5Terminate process, PM5Preventive Maintenance,

RS5Structural Rehabilitation, RF5Functional Rehabilitation

Figure 4.6 Strategy matrix for AC Interstate pavements (103).
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The annualized cost is differentiated w. r. t annualized
traffic to yield the PDC for a unit road-use measure.

MC~
d

dQ
ACð Þ~ d

dQ
P er{1ð Þ½ � ð4:12Þ

MC~
dP

dT

� 	
dT

dQ

� 	
er{1ð Þ ð4:13Þ

From Equation 4.10,

dP

dT
~{rC

erT

erT{1ð Þ2

" #
ð4:14Þ

Using Equation 4.1,

dT

dQ
~

{D

Q2
~

{TQ

Q2
~

{T

Q
ð4:15Þ

Using Equations 4.13, 4.14, and 4.15, the MPDC ($/
ESAL-mile) is given by:

MC~
er{1ð ÞrCTerT

Q erT{1ð Þ2
ð4:16Þ

Equation 4.16 presents the basic formulation used by
Small et al. (50), Vitaliano and Held (52) and Anani
and Madanat (48). The simplified MR&R strategy
formulation and data simulation, using an infinite
analysis period, is very problematic. Most of these
studies assumed that pavement M&R costs are
dominated by the resurfacing cost and thus completely
failed to consider the cost of routine and periodic
maintenance and reconstruction. In reality, every high-
way agency uses a very wide range of different
treatments for effective management of its highway
network. Agencies carry out rehabilitation, periodic
maintenance and routine maintenance activities, such
as crack sealing and patching, to prevent rapid
deterioration of the pavement structure. Also, when a
pavement completes a life cycle, it is reconstructed.

The simplified strategy for pavement preservation, as
implied in Equation 4.16, yields a tractable and
convenient mathematical formulation but fails to reflect
the actual maintenance strategies used by highway
agencies. Therefore, studies that used this metho-
dology for estimation of PDC obviously and seriously

TABLE 4.6
Decision Matrix for Selecting Surface Treatments for Rural Roads (104)

Significant Distresses
Rural Roadway

Low Volume Medium Volume High Volume

Rutting 12–25 mm (0.5–1.0 in) Microsurfacing, mill/inlay,

thin overlay

Microsurfacing, mill/inlay,

thin overlay

Microsurfacing, mill/inlay, thin

overlay

Bleeding . 10% Microsurfacing, thin overlay,

sand seal, chip seal

Microsurfacing, thin overlay,

chip seal

Microsurfacing, thin overlay, chip

seal

Roughness (IRI) 100–160

in/mi

Sand seal, chip seal Sand seal, chip seal Chip seal, friction course, thin

overlay

Alligator cracking

0–2% high

2–10% med

4–25% low

Scrub seal, sand seal, chip seal Sand seal, chip seal Chip seal, friction course, thin

overlay

Long./trans.

cracking

0–2% high

. 2% med

. 4% low

Scrub seal, sand seal, chip seal Sand seal, chip seal Chip seal, friction course, thin

overlay

Poor surface

Friction

SN , 40

Flush seal, scrub seal, sand seal,

chip seal

Sand seal, chip seal Chip seal, friction course, thin

overlay

Raveling

0–2% high

5–25% med

10–50% low

Flush seal, scrub seal, sand seal,

chip seal

Chip seal, friction course,

thin overlay

Chip seal, friction course, thin

overlay

Oxidation (asphalt

hardening)

Fog seal, flush seal, scrub seal,

sand seal, chip seal

Flush seal, sand seal,

chip seal

Chip seal, friction course, thin

overlay

Figure 4.7 MR&R strategy assumed in most past PDC
estimation studies.
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underestimated the PDC because only one category of
maintenance activity, rehabilitation, was considered.

4.2.4.2 MR&R strategy formulation using a finite
analysis period. There are very few past studies that
formulated MR&R strategies using a finite analysis
period for MPDC estimation. A prominent study in this
category is Hajek et al. (35) which formulated time-
based strategies for 20 representative categories of
Ontario roads separately for new pavements and in-
service pavements. From the developed strategies, data
were simulated for PDC estimation. Hajek et al. (35)
used a 60-year analysis period and 4% interest rate for
the strategy formulation. The authors did not provide
any detail about the M&R activities (rehabilitation and
periodic maintenance) that were considered over the
analysis period. Similarly, no detail was provided on the
cost of individual treatments and their application criteria.
Also, the study failed to establish the difference between
strength-driven and capacity-driven expenditures.

4.3 Highway Pavement MR&R Strategy—the Concept

Highway structures are constructed with the purpose
of providing service for several decades. Besides the
initial facility construction costs, there are other costs
incurred during the facility life cycle. As the facility is
intended to be perpetual, the life-cycle cost will be
repeated after a certain number of years. The initial
investment may include one-time costs including right-
of-way acquisition, grading and earthworks, drainage
and erosion control, relocation of utilities, environmen-
tal mitigation, and certain other costs that are not found
in recurring investments (23,63). The life-cycle cost
includes reconstruction, rehabilitation, periodic main-
tenance, and routine maintenance activities that are
repeated after a certain number of years. This study
deals with the costs that occur during the life cycle of a
pavement and which are the direct result of traffic
loading and climate; therefore, the initial (new) con-
struction cost has been excluded from PDC estimation.

Consider a hypothetical pavement structure which is
constructed in year zero with an initial cost $P as shown
in Figure 4.8. It is assumed that this facility will be kept
in service to perpetuity; and thus will be reconstructed
at regular intervals, as it will ultimately deteriorate (due
to traffic and climate) to a point where M&R alone
may not be sufficient to restore it to a desirable level.
Also, rehabilitation and maintenance will also be
carried out between the initial construction and
reconstruction or between two consecutive reconstruc-
tions (pavement reconstruction life cycle, N). The life-
cycle cost (the sum of the cost of reconstruction,
rehabilitation, and maintenance) will be repeated every
N-year period. All costs that occur during the replace-
ment cycle of the pavement can be discounted to the
initial year to yield into a single amount ($R). The
interval between two reconstruction activities (N) can
be either fixed or may vary depending on the loading
experienced in that interval and the quality standards.
Higher traffic and climatic severity will result in a
decreasing value of N while higher rehabilitation
standards and superior construction materials will
result in higher values of N (63).

The interval between two reconstruction activities
can be referred to as a reconstruction life cycle,
replacement life cycle, or simply the life cycle. This
study deals with all those costs that occur during the
reconstruction life cycle of a pavement; therefore, the
reconstruction, rehabilitation, and periodic and routine
maintenance costs form a key aspect of this study and
are considered herein for estimating the cost of
pavement damage.

Highway agencies use different types of pavement
structure for pavement design purposes. Also, in order
to maintain pavements in satisfactory condition,
agencies use different rehabilitation and maintenance
treatments. Depending on the design alternatives,
agency practices, and the availability of construction
materials, there are typically a limited number of
rehabilitation and maintenance treatments that could
be applied.

Figure 4.8 Initial and periodic costs to perpetuity for a typical pavement structure.
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A maintenance and rehabilitation (M&R) profile is a
combination of treatment types and their application
timings during the life cycle of a pavement. Other
synonymous terms in the literature are ‘‘schedule,’’
‘‘activity profile,’’ and ‘‘activity time line’’ (92,94). A
preventive maintenance activity profile is a set of
different preventive maintenance treatments applied to
a pavement structure at different times between the
rehabilitation life cycle (Figure 4.9), that is, between
two consecutive rehabilitations or between reconstruc-
tion and rehabilitation (94).

Different rehabilitation and maintenance treat-
ments can also be applied to a pavement structure
during the reconstruction life cycle, replacement life
cycle, or simply, life cycle, that is, the period between
two consecutive reconstructions (Figure 4.10). The
combination of different resurfacing activities applied
to a pavement structure at various times during the
reconstruction life cycle has been termed as ‘‘M&R
profile’’ in this study. Also in this study report, the

term ‘‘MR&R strategy’’ refers to the combination of
maintenance; rehabilitation and reconstruction (life-
cycle M&R profiles between successive reconstruc-
tions) over an infinite analysis period.

4.4 MR&R Strategy Formulation Developed in this
Study

The following steps used in this study for developing
MR&R strategies are discussed in the ensuing para-
graphs.

N Group pavements into families

N Establish highway agency MR&R practices
N Establish the effectiveness of M&R treatments

N Establish pavement rest periods

N Establish the cost of MR&R treatments

N Establish road-use measure and road-use trends
N Establish MR&R strategy parameters

N Formulate MR&R strategies for each family

N Estimate cost and traffic data from MR&R strategies

Figure 4.9 A typical maintenance activity profile within a rehabilitation life cycle.

Figure 4.10 A typical M&R profile within a reconstruction life cycle.
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N Develop models to relate road-use to expenditure

N Estimate MPDC for different highway functional classes

4.4.1 Grouping of Pavements into Families

A group of pavement segments with similar dete-
rioration characteristics can be referred to as a
pavement family (105). A pavement family usually
has similar material type and traffic characteristics.
Different families of pavement need to be considered
separately for pavement preservation strategy formula-
tion because a treatment or strategy that is suitable for
one family may not be suitable for others. For this
reason, agencies use certain preservation treatments to
address only certain specific pavement distresses in
specific pavement families. For example, chip seal is a
preventive maintenance treatment that is inappropriate
for high-speed and high-volume roads such as Inter-
state highway systems but is suitable for non-Interstates
(64,96). Therefore, it is appropriate that different
pavements be placed into families on the basis of their
attributes (e.g., material type, road functional class,
traffic volume, and climatic regions).

The development of pavements families is carried out
to reflect the inherent differences between the families,
mainly in order to incorporate the effect of the design
and construction features for which data are typically
unavailable. Also, grouping pavements into different
families creates surrogate variables on the basis of
functional class and surface type (100). It is hypothe-
sized that pavements with similar design and construc-
tion features grouped into families will exhibit similar
responses to different M&R treatments (88).

4.4.1.1 Grouping of pavement on the basis of surface
types. On the basis of surface type, pavements can be
broadly classified into three types: (1) flexible pavements
(2) rigid pavements, and (3) composite pavements.
These pavements have different structural responses
under loading and are designed using different loading
theories (13,45). Flexible pavements, also referred to as
asphalt pavements, bend or flex under loading and have
bituminous or asphalt material as the top course.
Flexible pavements are of two major types: conventional
flexible pavements and full-depth asphalt pavements.
Conventional flexible pavements are composed of a
layered system having superior quality material to
sustain high stress at the top layers and relatively low
quality material to sustain the low stress at the bottom
layers. In the case of full-depth asphalt pavements, one or
more layers of HMA are placed directly over a subgrade
or improved subgrade. Full-depth asphalt pavements are
suitable for areas having high traffic levels and where
other materials are not available locally (45).

Rigid pavements, also referred to as Portland cement
concrete pavements (PCCP), are comprised of a PCC
surface course as a principal structural layer placed directly
over the prepared subgrade or over a single layer of
stabilized material (45). A rigid pavement consists of stiff

material and therefore distributes the load over a
relatively wider area compared to a flexible pavement.
Also, unlike flexible pavements where the combined
strength of all layers is considered in the design, rigid
pavement design considers the structural strength of the
concrete slab as the only major factor. Therefore, minor
variations in subgrade strength have little influence
on the overall strength or capacity of the pavement
structure (106). Rigid pavements can be broadly classi-
fied as follows: (1) jointed plain concrete pavements
(JPCP); (2) jointed reinforced concrete pavements
(JRCP); and (3) continuously reinforced concrete pave-
ments (CRCP). Rigid pavements have a higher initial
cost and traffic noise, but are stronger and durable, and
can provide a more skid-resistant surface (88,106).

A composite pavement is a combination of rigid and
flexible pavement. It is considered an ideal pavement
because it combines some of the desirable characteristics
of both types of pavements. When a HMA overlay is
placed over a PCC layer, the result is a strong base and
smooth riding surface. This type of pavement as new
construction is seldom used due to its high cost;
however, some concrete pavements, after many years
of service, are overlaid by an asphalt layer to yield this
pavement type (45). In this study, a composite pavement
is not considered as a separate pavement family, rather
flexible and composite pavements are considered as one
family for the MR&R strategy formulation.

4.4.1.2 Grouping of pavement by functional class.
Functional classification is the grouping of different
highways on the basis of the mobility and accessibility
services they provide to travelers. The functional clas-
sification helps in assigning jurisdictional responsibility,
conducting fiscal planning, and establishing design
standards for different types of roads (107). Besides
surface types and functional classes, road networks can
also be grouped on the basis of whether or not they are
located on the National Highway System (NHS), a
network of approximately 160,000 miles of U.S.
roadways that are important for mobility, and defense
and economic vitality of the nation (107). Interstates
which are part of the NHS, have the highest level of
traffic loading, as well as superior mobility, access
control, and design and construction standards
compared to other roadways (92). Also, a fraction of
U.S. roads and selected state roads form part of the
NHS; these are termed National Highway System non-
Interstate (NHS (NIS)). The basis of construction,
safety, and design standards of NHS (NIS) are superior
to non-National Highway System (NNHS) roads but
inferior to those of the Interstate system. NNHS roads
are mostly minor arterial or collector roads having
lower standards of design, construction, maintenance,
and safety compared to the NHS roads (88).

On the basis of surface type and functional classifica-
tion, the highway distribution in the state of Indiana is
shown in Table 4.7. It can be noticed that NNHS roads
comprise the majority of U.S. roads and flexible
pavements are a dominant surface type category.
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4.4.2 Highway Agency MR&R Practices

In formulating MR&R strategies in the study, the
objective is not to compare the competing alternatives
and select the best one, but rather to assemble data
points to establish a relationship between the total cost
of the treatments in a given MR&R strategy and the
traffic loading and other explanatory variables. For
preserving each family of pavements in their jurisdiction,
different highway agencies use different M&R treat-
ments. There is no standard list of treatments that are
applied universally across the states. However, from time
to time, agencies provide guidelines on the basis of their
latest practices. Before discussing the types of treat-
ments, it is appropriate to define certain terms which are
associated with pavement M&R strategy formulation.

A FHWA memorandum (109) regarding pavement
preservation definitions provides a standard platform for
interpreting pavement preservation to all local and state
highway agencies, thus helping to ensure some degree of
consistency. On the basis of this, FHWA memorandum
and other literature (65,69,92,98), pavement preserva-
tion and related terminologies are presented below:

N Pavement Preservation: This refers to all activities under-
taken to maintain serviceable pavements and includes

corrective and preventive and minor rehabilitation
(Figure 4.11). It excludes new construction, reconstruc-

tion and major rehabilitation. Pavement preservation is a
long-term strategy aimed at preserving investment in the

highway pavement infrastructure, cost effective extension
of pavement life, improving safety, reducing delay and
meeting users’ expectations (98,109).

N Preventive Maintenance: FHWA defines preventive

maintenance as a planned strategy of cost-effective
treatments to an existing pavement network to correct

minor defects, retard future deterioration, and improve
the functional condition without enhancing structural
capacity. Preventive maintenance extends the service life

of structurally sound pavements, typically applied to
pavements in good condition, and forms a major

component of pavement preservation (69,98,109).

N Corrective Pavement Maintenance: These are reactive and
unscheduled activities that are performed to restore a
pavement to an acceptable level of service after an

unforeseen situation. Pothole repairs or patching of
localized pavement deterioration are examples of flexible

pavement corrective maintenance. In the case of rigid
pavements, slab replacement at an isolated location is an

example of corrective maintenance. Corrective mainte-
nance at times requires an immediate response to avoid
serious consequences (98,109).

N Routine Maintenance: Planned work performed on a
routine basis to preserve the condition of highway
pavements. These activities which are typically carried
out at relatively short interval, include crack sealing
(routine preventive maintenance), and patching (routine
corrective maintenance) (69,109).

N Minor Rehabilitation: This is the non-structural enhance-
ment of an existing pavement structure aimed at reducing
aging and restoring pavement serviceability. For exam-
ple, these treatments can help to eliminate cracking in
flexible pavements caused by environmental factors, thus
extending the life of the pavement. Minor rehabilitation
techniques are non-structural in nature and therefore fall
into the category of pavement preservation (109).

N Major Rehabilitation: Major rehabilitation is defined as
structural enhancements of a pavement with the inten-
tion of extending the service life of the pavement
structure and to improve its load-carrying capacity (109).

N Pavement Reconstruction/Replacement: Pavement recon-
struction/replacement often consists of removal of the
existing pavement structure, including the subbase and
placing a new pavement structure of equivalent or
increased strength over a prepared subgrade (64). A
pavement that is so structurally damaged that it cannot be
restored, either by maintenance or rehabilitation, is a
candidate for reconstruction/replacement. Thus, the
existing mainline pavement is replaced with a complete
new pavement structure. The width and number of lanes
of new pavements may differ from those of the original
pavement. The final cost may also include the costs of
enhanced drainage and facility safety (e.g., grading,
drains, widened shoulders, and guardrails (92).

N Pavement Rehabilitation 3R: This treatment involves
pavement rehabilitation or reconstruction, shoulder
work such as patching and/or replacement, and limited
safety improvement and drainage work. 3R rehabilita-
tion treatments may also include curb or sidewalk work
and minor realignment of the road centerline at specific
locations. 3R rehabilitation projects do not include right-
of-way acquisition (65).

N Pavement Rehabilitation Partial 3R: This treatment
involves placing of a new surface on the existing road to
improve service. It does not involve alignment work and
thereforeusesconstructionstandardsthatdifferfromthose
of 3R/4R standards. Road widening and modernization or
a significant facility upgrade are not included in 3-R
rehabilitation treatments. The primary focus is to restore
the pavement surface. 3-R rehabilitation treatments may
also include incidental related work items such as improve-
ments to curbs, drains, shoulders, or guardrails (65).

N Pavement Rehabilitation 4R: This treatment is a major
rehabilitation project which involves complete replace-
ment of the entire pavement structure. Correction of all
safety defects and reconstruction of items outside the

TABLE 4.7
Distribution of Pavement Families and Sizes by Surface Type and Road Functional Class (108)

Pavement Classification

Road Functional Class

Interstate NHS (NIS) NNHS

Pavement surface type (miles) Flexible 95 571 8595

Rigid 184 282 61

Composite 889 883 1748

Total (miles) 1168 1736 10404
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pavement structure are part of all 4R projects. The
purpose of 4R projects is to bring the road up to current
geometric standards and to upgrade safety and drainage
features. Work may include lane additions if necessary
(65).

In the case of flexible pavements, the most widely-
used preventive maintenance treatments include thin
HMA overlay, microsurfacing, crack seal, and fog seal.
For rigid pavements, the most frequently-used pre-
ventive maintenance treatments include undersealing,
crack sealing, and saw-and-sealing joints. Flexible and
rigid pavement preventive maintenance treatments,
which are used to address specific pavement distresses,
are summarized in Tables 4.8 and 4.9.

For pavement rehabilitation a number of treatments
are applied by INDOT in practice. However, no explicit
guidelines similar to those in Table 4.9 were provided
for rehabilitation treatments. Table 4.10 provides a
general overview of different types of preventive M&R
treatments used by INDOT in the recent past for
flexible and rigid pavement. The details were extracted
from available INDOT contract record files.

These tables provide an overview of M&R treat-
ments that are applied frequently. This table does not
cover the data for reconstruction activities. It can be
noticed that in the case of flexible pavements, thin

HMA overlay was the most common choice for
preventive maintenance of flexible pavements. For
rehabilitation of flexible pavements, besides 3R/4R
rehabilitation, HMA overlay (structural) and resurfa-
cing of asphalt pavements (partial 3R) were common
choices. In the case of rigid pavements, PCC patching
has been widely used as preventive maintenance
treatment while Repair PCC and HMA Overlay,
Crack-and-seat PCC and HMA overlay, Rubblize
PCC and HMA Overlay were common selections for
rehabilitation. These choices were also influenced by
the nature of the existing surface defects and the overall
pavement condition at the time of the decision.

Every agency has a certain set of performance levels
that warrant application of different preventive M&R
treatments. For MR&R strategy formulation, it is
necessary that performance thresholds are clearly estab-
lished as to when to apply which treatment and at what
level of initial condition. A treatment applied too early
when the asset is in the superior performance stage or
applied too late when the asset’s performance is relatively
inferior is not cost-effective (94). INDOT has established
the actions that should not be applied when
100,IRI.200 (Table 4.11). When IRI,100, the pave-
ment is in relatively good condition and when pavement
IRI . 200, then it is a suitable candidate for
reconstruction. Also, the INDOT Pavement Design
Manual recommends that no preventive maintenance
treatment should be applied when IRI,130 (64).
Khurshid et al. (20) using data for the state of
Indiana, established optimal thresholds for thin HMA
overlay and functional HMS overlay. The established
thresholds are consistent with current INDOT stan-
dards.

Figure 4.11 Components of pavement preservation (109).

TABLE 4.8
INDOT HMA Preventive Maintenance Treatment Guidelines (64)

Treatment AADT1 Pavement Distress Rutting (in)

IRI

(in/mi)

Friction

Treatment Surface Aging

Crack seal Any Low to moderately severe

surface cracks

N/A N/A No N/A

Fog seal , 5,0002 Low-severity environmental

surface cracks

N/A N/A No3 Reduces aging and oxidation;

arrests minor raveling

Seal coat (chip seal) , 5,0002 Low-severity environmental

surface cracks

, 0.254 N/A4 Yes Reduces aging, oxidation and

minor raveling

Microsurfacing Any Low-severity surface cracks Any , 130 Yes Reduces aging, oxidation and

minor raveling

Ultrathin bonded

wearing course

(UBWC)

Any Low to moderately severe

surface cracks

, 0.25 , 140 Yes Reduces aging, oxidation and

moderate raveling

HMA inlay Any Low to moderately severe

surface cracks

Any , 150 Yes Reduces aging, oxidation and

raveled surface

HMA overlay Any Low to moderately severe

surface cracks

Any , 150 Yes Reduces aging, oxidation and

moderate raveling

1For mainline pavement.
2Unless traffic can be adequately controlled.
3Treatment may reduce skid numbers.
4Treatment does not address this.
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TABLE 4.9
INDOT PCC Preventive Maintenance Treatment Guidelines (64)

Treatment AADT* Pavement Distress IRI (in/mi)

Friction

Treatment Surface Aging

Crack seal Any Mid-panel cracks with aggregate interlock N/A No N/A

Saw and seal joints Any . 10% joints with missing sealant; otherwise joints

in good condition

N/A No N/A

Retrofit load transfer Any Low to medium severity mid-panel cracks; pumping

or faulting at joints , 0.25 in.

N/A No N/A

Surface profiling Any Faulting , 0.25 in.; poor ride; friction problems N/A No N/A

Partial-depth patch Any Localized surface deterioration N/A Yes N/A

Full-depth patch Any Deteriorated joints; faulting $ 0.25 in.; cracks N/A No N/A

Underseal Any Pumping; voids under pavement N/A No N/A

Slab jacking Any Settled slabs N/A No N/A

*For mainline pavement.

TABLE 4.10
Historical Trends—INDOT Maintenance and Rehabilitation Treatments

Activity Treatment No. of Records

Flexible preventive maintenance Crack seal 4

Asphalt patching 51

Micro-surfacing 24

Thin HMA overlay 269

Wedge and level 70

Flexible rehabilitation HMA overlay functional 787

HMA overlays structural 1715

Resurfacing of asphalt pavement (partial 3R) 816

Mill full-depth and asphalt concrete overlay 6

Road rehabilitation (3R/4R standards) 148

Rigid preventive maintenance PCC patching 146

PCC cleaning and sealing joints 14

Diamond grinding 4

Rigid rehabilitation PCC repair and HMA overlay 50

Crack and seat PCC and HMA overlay 20

Rubblize PCC and HMA overlay 18

PCC overlay on PCC 3

Resurface PCC pavement (partial 3R standards) 8

Road rehabilitation (3R/4R standards) 148

Composite rehabilitation Crack and seat composite pavement and HMA overlay 30

Rubblize composite and HMA overlay 8

TABLE 4.11
Pavement Performance Standards (110)

Performance Indicator

INDOT Standards—Pavement Performance Indicator Value

(m/km) (in/mi) Performance

International Roughness Index (IRI) , 1.6 , 100 Excellent

1.6–2.37 100–150 Good

2.37–3.15 150–200 Fair

. 3.15 . 200 Poor

Pavement Condition Rating (PCR) . 90 Excellent

90–80 Good

80–70 Fair

, 70 Poor
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4.4.3 Effectiveness of Asset Interventions

A number of studies have been carried out in the
recent past to assess the effectiveness of standard
pavement M&R treatments. Treatment service life,
increase in the area bounded by performance curve, or
increased average pavement condition over treatment
service life are widely-used measures of effectiveness
(94). However, treatment service life has more intuitive
meaning and is widely used by agencies.

The effectiveness of the initial pavement construction
and of subsequent M&R activities can have a
significant impact on MR&R strategy formulation.
For similar traffic and climatic loadings, MR&R
strategies with longer intervals between M&R activities
will generally have lower total agency costs (the sum of
reconstruction, rehabilitation and maintenance activ-
ities) as compared to strategies with shorter intervals. A
number of studies in the past have estimated the
effectiveness of different M&R treatments (67–69);
however, relatively little effort has been made to
estimate the initial performance period of newly-
constructed pavements, which is referred to as the ‘‘rest
period’’ in this study (the time from opening the newly-
constructed road to traffic (or pavement reconstruc-
tion) to the time of application of the first periodic
maintenance) (Figure 4.12). Also, different studies have
provided time-based estimates for the design life of
flexible and rigid pavements (64,92,111). INDOT
recommends a rest period of 20 years for flexible
pavements and 30 years for PCC pavements (64). These
estimates are based on expert opinion and the personal
judgment of pavement engineers.

In the present study, an analytical approach was used
to estimate the rest period. Maintenance and rehabilita-
tion treatments are commonly applied by highway
agencies to extend pavement life and to improve
pavement ride quality (112). Reconstruction is carried
out when a pavement has structural deficiencies to such

an extent that any maintenance or rehabilitation
treatment will not be cost-effective. The effectiveness
of M&R treatments can be measured by the extent to
which they extend the pavement life or enhance ride
quality in the short or long term (113). On the other
hand, the effectiveness of a newly-constructed or
reconstructed pavement can be estimated by determin-
ing the time from construction/reconstruction to the
application of the first periodic maintenance treatment
(i.e., the rest period). The effectiveness can be measured
in either the short-term or the long term or can be
quantified as monetized benefits or non-monetized
benefits (97). The three commonly-used measures of
long-term effectiveness (93) for M&R treatments are
discussed briefly in the ensuing paragraphs.

Service life of reconstruction, rehabilitation, or
periodic maintenance. This can be measured directly as
the time elapsed between the pavement reconstruction
or treatment application and the time taken to reach
some threshold as shown in Figure 4.13.

Increase in average pavement performance over pre-
treatment performance. This measure of long-term
effectiveness has been used in a number of past studies
(93,97,114) and makes use of increase in average asset
condition upon intervention. Pre-intervention perfor-
mance and average post-intervention performance can
be used to estimate the increase in average pavement
performance.

Effectiveness %ð Þ~100|

InitialPerformance{AveragePerformance

InitialPerformance

� 	 ð4:17Þ

This approach can be used easily for estimating the
effectiveness of periodic maintenance and rehabilitation

Figure 4.12 Pavement rest period.
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treatments. However, in the case of pavement recon-
struction, it is inappropriate because the old pavement
is removed and hence its initial condition is incon-
sequential. In the case of the periodic maintenance and
rehabilitation treatments, the temporal span between
treatment applications is relatively short and a large
number of pavement segments receive this treatment
type; therefore, there often are sufficient data points for
model building. In the case of reconstruction, not only
is the temporal span between two reconstructions
activities long, but also relatively few assets are
reconstructed every year.

The area bounded by the performance curve (ABPC).
This is another measure for evaluating the long-term
effectiveness of pavement intervention that combines
the benefits of both service life and an increase in
average pavement condition over service life
(93,114,115) (Figure 4.14). ABPC can be used as a
surrogate for the overall intervention benefits, which
are difficult to otherwise quantify, such as reduced
travel time, enhanced safety and reduced vehicle
operating cost (88,115,116).

Every agency has an important task of establishing
guidelines for pavement M&R. Having proper pave-
ment M&R guidelines help in selecting the proper
treatments for both flexible and rigid pavements. Also,
agencies need to have quality data for asset intervention
effectiveness analysis. Where data are available, it is
possible not only to estimate treatment service life for
different rehabilitation and preventive maintenance
treatments, but also to estimate the rest period for
newly-reconstructed pavements. This study makes use
of the intervention service life as the measure of
effectiveness.

Information on the treatment service life and the rest
period can help in the formulation of pavement MR&R
strategies for various agency tasks, including PDC
estimation. A number of studies have been carried out
in Indiana and elsewhere in the U.S. (in the last two
decades) where efforts have been made to estimate the
treatment service life. Information on the treatment
service life can help to approximate how on average
different treatments will withstand specific prevailing
traffic and climatic loading. In the present study,
pavement strategies were formulated for Indiana using

Figure 4.13 Schematic representation of intervention service life.

Figure 4.14 Schematic representation of area bounded by performance curve.
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the treatment service lives developed for Indiana or
recommended by INDOT. Treatment service life values
of rehabilitation and preventive maintenance treat-
ments used by INDOT have been estimated in the
recent past (69,88,97,117). For treatments where there
are insufficient data, certain guidelines have been
provided by INDOT (64) based on historical record.
The results from these studies are summarized in
Table 4.12.

4.4.4 Collection of Historical Cost Data for MR&R
Intervention

For pavement life-cycle costing and prioritization, it
is necessary to have a fair estimate of the agency cost of
different pavement treatments. Agency cost is the direct
cost of labor, equipment and material that is incurred
by the road agency in reconstruction, rehabilitation, or
maintenance, implemented in-house or by contract.

In past studies, the agency cost has been estimated
using one of two broad approaches as shown in
Figure 4.15: (1) a disaggregate approach where unit
prices are assigned to individual components of the
work activities on the basis of the historical average
costs of these individual pay items; and (2) an aggre-
gate approach which uses either an average value,
such as dollar per unit dimension or cost models
which express the total cost as a function of the asset
length, width, area, or condition (63,92,118). These two
broad approaches for cost estimation are shown in
Figure 4.15.

For pavement planning purposes and life-cycle cost
analysis, the use of average costs (dollars per unit mile)

can provide satisfactory results. Average costs have been
used in a number of past studies for different rehabilita-
tion and preventive maintenance treatments. In 2002,
the Washington State Department of Transportation
(WSDOT) conducted a survey for highway construction
cost comparison using data from 25 states and estimated
the average highway construction costs in units of $/lane-
mile (119). That study found that the construction cost
of a single lane-mile of highway varies between
$1million and $8.5 million (119). A similar study was
carried out by Collura et al. (120) to estimate the service
life and cost of M&R treatments used on local roads in
Massachusetts and other parts of New England; the cost
of overlay was estimated as $30.36/ton of material. A
FHWA study (121), using data from different states,
established estimates for pavement widening and con-
struction projects separately for rural and urban areas
and found that the construction cost of one lane-mile of
a typical four-lane divided highway ranged from $3.1 to
$9.1 million. Lamptey et al. (92), using data from
the INDOT Contracts Division, estimated the cost in
$/lane-mile of various rehabilitation and preventive
maintenance treatments.

Recently, Irfan et al. (118) investigated the functional
relationships between treatment cost and project
attributes. Using road functional class, highway loca-
tion, year of the treatment, project size, treatment
intensity, and asset condition prior to the treatment as
explanatory variables, that study developed separate
cost models for Interstate, NHS (NIS), and NNHS
systems and showed that project size, number of lanes,
and initial condition at the time of the preservation
treatment had significant influence on treatment costs.

TABLE 4.12
Treatment Service Lives for Rehab and Maintenance Treatments

Treatment Treatment Type INDOT

Other Indiana Studies

Avg. SL Range of SL

Flexible rehabilitation New construction 20 — —

HMA overlay, structural 18 11 6–18

HMA overlay, functional 15 12 6–14

Resurfacing (partial 3R standards) — 11 7–19

Mill full-depth and asphalt concrete overlay — 9 7–14

Flexible preventive maintenance Thin HMA overlay 9 9 7–14*

Microsurfacing 8 7 5–9

Seal coat (chip seal) 4 5 —

Asphalt crack seal (route and seal) 3 3 —

Rigid rehabilitation New construction 30 — —

Repair PCCP & HMA overlay 15 14 10–19

PCC overlay of PCC pavement 25 22 17–25

Crack and seat PCCP and HMA overlay 15 18 14–20

Rubblize PCCP and HMA overlay 20 13 10–16

Rigid preventive maintenance HMA overlay, functional 12 — —

PCCP patching — 10 8–14

Crack seal — 4 —

Concrete pavement restoration (CPR) techniques 6 — —

PCCP patching 8 — —

*Source: (64,69,88,97,117).
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In this study, the focus is on estimating how much
damage, on average, each vehicle causes to the
pavement structure. Therefore, it is more appropriate
to use the average cost (cost/lane-mile) as it can provide
a superior representation of actual highway agency
spending on a lane-mile of a pavement segment.

4.4.5 Historical Traffic Data and PDC Estimation

AADT, the average daily number of vehicles passing
a specific road segment, is obtained by dividing the
total yearly vehicle traffic volume by 365 days (total
number of days in a year). Indiana has 114 continuous
traffic counters (CTC) all over the state that collect
traffic speed and volume 24 hours a day throughout the
year. Of the 114 CTC sites, 50 are equipped with weigh-
in-motion (WIM) technology to collect truck weight
data. There is also a coverage count program that
operates on a three-year cycle: one third out of a total
of 30,000 count locations are covered each year through
this program. At coverage count locations, at least 48
hours of traffic data are collected and subsequently
used to estimate AADT using different adjustment
factors developed through CTC (axle, week-day, and
seasonal). INDOT classifies all vehicles into 13 different
vehicles classes (Scheme F), depending upon the axle
spacing and number of axles. All vehicles from Classes
4 through 13, as per the FHWA classification system
(Part II Appendix E), are counted as commercial
vehicles (122). For purposes of MR&R strategy
formulation in this study, the traffic loading was

calculated using the most recent AADT and the
Truck AADT’s.

4.4.6 Parameters Involved in Highway Pavements
MR&R Strategy Formulation

4.4.6.1 Pavement life-cycle length. Pavements are
designed and constructed for providing service for a
long period of time. There is hardly any occurrence
where a highway is constructed and subsequently
abandoned. Like most other civil structures and
facilities, it can be assumed that highways are built to
provide land transportation services for an infinite time
period even if it needs to be rebuilt successively after
reaching its design life. After construction, there are a
number of activities that are performed to ensure that
the highway pavement continues to provide reasonable
serviceable conditions, including rehabilitation,
periodic and routine maintenance, and reconstruction.
Service life, a concept that depends on the context in
which it is used, can be defined generally as the time
elapsed between the treatment application and the time
when the pavement condition reaches some threshold
or the time interval between applications of successive
treatments with the subsequent treatment often at the
same or a higher level. With regard to construction life-
cycle, service life can be defined generally as the time
between highway construction and its reconstruction or
the time between two consecutive reconstructions. It
can be considered as the aggregation of the rest period
and the service life of different individual rehabilitation
and periodic maintenance treatments that are applied
during the remaining life (92) (Figure 4.16).

When different M&R strategies are formulated for
either life-cycle cost analysis (LCCA), estimation of
PDC, or carrying out sensitivity analysis for any of the
factors affecting the total cost of competing M&R
strategies, the analysis period should be of sufficient
length to accommodate all representative activities
(rehabilitation and periodic maintenance) needed to
maintain the pavement at a reasonable level of service.
FHWA also recommends that the analysis period for
economic efficiency analysis should be sufficiently long

Figure 4.15 Techniques for cost estimation.

Figure 4.16 Pavement life-cycle illustration.
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to reflect the long-term cost differences between
competing alternatives (90). FHWA recommends that
the selected analysis period should include at least one
rehabilitation activity and should be at least 35 years.
However, the analysis period may range between 30–50
years depending upon the time of application of the
rehabilitation activity (90,123).

Dickey and Miller (124) recommended trade-off
analysis between two considerations while selecting an
appropriate analysis period: (1) a long analysis period is
considered appropriate for highway facilities as these
are intended to serve many future generations and may
last for over hundred years; and (2) an excessive
analysis period becomes inappropriate when the effect
of the discounted facility rehabilitation and mainte-
nance cost overwhelms the facility construction cost.

Sinha and Labi (63) emphasized that the factors that
should be given due consideration while selecting the
analysis period are: (1) length of the service life (project
type); (2) nature of the regional or national economy
(stable or fluctuating economic trends); (3) forecast of
uncertainties; (4) rate of technology change; (5) social
discount rate and its stability; and (6) likelihood of
construction/implementation delays.

When the different MR&R strategies formulated for
flexible and rigid pavements have different analysis
periods, the equivalent uniform annual cost (EUAC) is
the most appropriate economic efficiency criterion (63).
However, when the overall analysis period for different
MR&R strategies is the same, but individual treatments
have different service lives, there are some alternatives
that may have residual value at the end of analysis
period, which must be accounted for in monetary value
(63). For LCCA, INDOT recommends that analysis
period should preferably be 50 years and should include
at least one rehabilitation treatment (64).

4.4.6.2 Remaining service life. Remaining service life
(RSL) is the additional time period during which a
highway facility can provide reasonable service at the
end of analysis period (64). MR&R strategies should be

evaluated over an equivalent analysis period so that the
cost comparison is fair. It is possible that when MR&R
strategies are formulated, some of the strategies will
have service lives that will exceed the designated service
life, which is termed as RSL. Failing to account for
RSL may result in biased evaluations. A graphical
representation of RSL is shown in Figure 4.17.

From Figure 4.17, it is clear that at the end of the
analysis period, there can still be some remaining useful
service life due to the last rehabilitation. To calculate
the RSL, a straight line function may be used from the
time of application of the rehabilitation until the end of
its expected useful life. RSL is added as a negative cost
in calculating the total net present value (NPV) of all
MR&R activities during the analysis period. There is a
difference between RSL and salvage value: Salvage
value is the actual value realized from the sale or reuse
of recovered material at the termination or removal of a
transportation facility from service; RSL is obtained at
the end of the analysis period when the facility is still in
operation (63,125).

4.4.6.3 Discounting and inflation. The cost and
benefits occurring at different points in time during
the service life of a MR&R strategy should be
compared only after accounting for the opportunity
cost. The value of money erodes over time due to the
combined impact of inflation and opportunity cost.
Inflation is defined as an increase in the prices of goods
and services with time or a general trend of higher
prices of goods with time. Opportunity cost is the
economic return or income that is not earned in some
future year by deciding not to invest in the current year
(63,125).

In formulating MR&R strategies and carrying out
subsequent economic analysis, all the future costs and
benefits of a project should be expressed in constant
dollars using price indices and then discounted to a base
year (year 0) using a real interest rate in order to
account for the effects of inflation. FHWA (125) states
that public-sector projects benefits should depend upon

Figure 4.17 Remaining service life calculation.
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real gains only (cost saving), and not on purely price
effects. Walls and Smith (90) and Sinha and Labi (63)
argue that since all benefits and cost of different
alternative MR&R strategies will be equally affected by
inflation, therefore it is a reasonable assumption to
ignore the impact of inflation.

FHWA recommends the use of a real interest rate in
the range of 3–5%. INDOT recommends a 4% real rate
of interest, but also emphasizes that sensitivity analysis
should be carried out for different interest rates in the
0–10% range to observe the impact of varying interest
rate (64).

4.5 Chapter Summary

This chapter explained the general framework
developed and used in this study for PDC estimation.
The steps were explained in detail, with the exception of
the pavement life-cycle M&R profile, the MR&R
strategy formulation, and the actual model estimation;
these are discussed in detail in Chapter 5. An important
part of the framework is the definition of all costs
associated with pavement damage so that all pavement-
related expenditures can subsequently be accounted for
and appropriately allocated to users. Also, the prevail-
ing agency maintenance practices, specifically, the types
of pavement preservation and their effectiveness, costs,
and application timing criteria are key aspects of the
framework. The framework also uses detailed traffic
and cost data information to help mimic realistic
practices of MR&R and their influence, among other
factors, on pavement damage.

5. ESTIMATION OF MARGINAL PAVEMENT
DAMAGE COST ON THE BASIS OF
FORMULATED MR&R STRATEGIES

5.1 Introduction

The framework for MPDC estimation was discussed
in Chapter 4 of this study. In the present chapter, the
applicability of the developed framework is demon-
strated using data from in-service pavements in
Indiana. The chapter begins with a discussion of the
pavement families, standard maintenance and rehabili-
tation treatments in the state, treatment cost and traffic
data, and the effectiveness of the treatments that
comprise the M&R activity profiles. This chapter
discusses results of the cost vs. usage models that used
data generated from the formulated strategies and
shows how the MPDC were derived from the cost vs.
usage models.

5.2 Pavement Families for this Study

In this study, pavements were classified on the basis
of their surface type and functional classes (Figure 5.1),
which is consistent with past studies in Indiana that
classified pavements on the basis of surface type
(flexible and rigid) and functional class (Interstate,
NHS (NIS), and NNHS) (92,97). For consistency with

INDOT Life-Cycle Cost Analysis (LCCA) policy,
composite pavements were not considered as a separate
class (64). The M&R profiles for each life cycle and
MR&R strategies comprising multiple life cycles, were
established for each pavement family as shown in
Figure 5.1. Further details of sub-grouping based on
traffic loading are discussed in subsequent sections.

5.3 Maintenance and Rehabilitation Treatments
Considered in this Study

The routine and periodic maintenance and rehabili-
tation treatments for flexible and rigid pavements
considered in this study’s MR&R strategy formulation,
are discussed below.

5.3.1 Flexible Pavement Treatments

For flexible pavements, following routine and peri-
odic maintenance and rehabilitation treatments were
considered:

N Crack Sealing: Crack sealing is the placing of specialized
material into the working cracks of an asphalt pavement
to prevent the water from entering the pavement
structure, thus extending the pavement service life. This
is a routine pavement maintenance activity that is carried
out by most highway agencies. INDOT recommends that
crack sealing should be carried out when surface cracks
are of low-to-moderate severity, irrespective of the
AADT levels (64,98).

N Chip Sealing: Chip sealing is a preventive maintenance
technique used to reduce the rate of pavement deteriora-
tion. The treatment is applied to the entire pavement
surface using a combination of hot asphaltic cement and
coarse aggregate. First, the asphalt emulsion is sprayed
on the prepared surface, followed by the spreading of a
thin layer of crushed stone. INDOT recommends this
treatment for application to pavements that have low-
severity environmental cracking and AADT less than
5,000. Chip sealing can help in reducing the aging and
oxidation of pavement as well as reduce raveling
(64,126).

N Thin Hot-mix Asphalt (HMA) Overlay: This treatment is
used as a non-structural preventive maintenance treat-
ment for reducing the rate of deterioration of a pavement
structure. This treatment, which is suitable for pavements
with low-to-moderate cracking, can help reduce aging
and oxidation, restore a raveled surface, and help address
problems of rutting, surface defects, skid resistance,
road-tire noise, and drainage (64,88,98,127,128). The
overlay is placed in thin lifts ranging from 12.5 mm (0.5
in.) to 37.5 mm (1.5 in.) and adds little to pavement
structural capacity (129). Thin HMA overlays are

Figure 5.1 Pavement families considered in this study.
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considered a cost-effective method of preserving and

maintaining flexible pavements. The design of a thin

HMA overlay generally depends on the expected traffic
volume and purpose for which it is being used. This

treatment is applied to all classes of highways irrespective

of traffic volume (64,98).

N Microsurfacing: This treatment involves a mixture of

dense-graded aggregate, asphalt emulsion, water, and

mineral fillers used as preventive maintenance for asphalt
pavements. It can increase skid resistance, provide color

contrast, repair slight to moderate surface defects, reduce

aging, oxidation, and minor raveling (64,98,130,131).
Microsurfacing can be applied to any road for quick

friction-restoration treatment, irrespective of traffic

volume. Microsurfacing is resistant to cracking in the
winter months and rutting and shoving in the summer

and can be applied in a broad range of temperature and

weather conditions. Therefore, it can assist in lengthen-
ing the paving season. Also, microsurfacing has low

energy requirements and is relatively environmentally

safe (131).

N Functional HMA Overlay: This treatment is used to

restore the pavement condition on structurally-sound

pavements. It consists of an intermediate course and a
surface course (64) but is non-structural and contributes

little to the pavement structure. The treatment improves

ride quality, enhances appearance, reduces road tire
noise, corrects minor surface defects, and improves skid

resistance (132).

N Structural HMA Overlay: This treatment is designed to
add structural support to an existing pavement. It

consists of a base course, an intermediate course, and a

surface course that are placed after milling the existing
pavement. This rehabilitation treatment not only

strengthens the existing pavement but also restores

smoothness (64).

N Mill Full-Depth and Asphalt Concrete (MFD & AC)

Overlay: This is a rehabilitation treatment where the

existing pavement surface is milled to remove the top
distressed material and overlaid with asphalt concrete. A

milled surface also ensures that the new layer of asphalt

concrete is laid to the same level of the curb as that of the
pre-milled pavement (133).

N Resurfacing over Existing Asphalt Pavement (Partial 3R):

Partial 3R rehabilitation treatment involves the place-
ment of a new surface on an existing pavement to

improve serviceability. This treatment does not involve

alignment work; therefore, the construction standards
are not equivalent to the 3R/4R standards. Also, road

widening, modernization or significant facility upgrade

are excluded from Partial 3R. The primary focus is to
restore the road surface condition, but rehabilitation

contracts may also include incidental work such as curbs,

drains, shoulders, guardrail improvement, minor lane
and shoulder widening, and minor alterations to vertical

grades and horizontal curves (65,88). Thus, the cost of

Partial 3R projects may partially include costs other than
the main work on the pavement.

5.3.2 Rigid Pavement Treatments

For rigid pavements, the following routine and
periodic maintenance and rehabilitation treatments
were considered in this study:

N Crack Sealing: This treatment involves significant pre-
paration of any existing cracks, followed by application
of high quality sealant into or on top of the crack. This
treatment reduces water infiltration into the pavement
and protects cracks from intrusion of incompressible
material. The entry of incompressible material into
cracks can hinder slab expansion that could lead to
blowups or buckling of PCC slabs. Also, sealing reduces
the amount of water entering the pavement structure as
water may cause pumping, reduced support, and corner
breaks. Crack sealing is recommended for transverse or
longitudinal cracks of low-to-moderate severity and
widths smaller than 0.5 in. (134).

N Cleaning and Sealing of Joints: Joint resealing consists of
routing (sawing to remove the old sealant and to reshape
the joint seal reservoir), followed by cleaning and sealing
of the joint. INDOT’s Pavement Design Manual
recommends that contraction and longitudinal joints be
inspected periodically, particularly for pavements that
are eight to ten years old, so that cleaning and sealing of
required joints can be carried out when needed. Where a
PCCP inspection shows over 10% of joints having loose,
missing, or depressed sealant, the pavement is considered
a candidate for joint cleaning and sealing. This pre-
ventive maintenance technique prevents the entry of
water and incompressible material into pavement joints
(64,134).

N Concrete Pavement Restoration (CPR): This treatment is
a set of corrective and preventive maintenance techniques
to restore the condition of a moderately distressed PCCP.
CPR techniques that are used to repair isolated areas of
deterioration in a rigid pavement include diamond
grinding, full-depth repair, partial-depth repair, slab
stabilization, load-transfer, retrofitting of concrete
shoulders, retrofitting of edge drains, dowel bar retrofit,
and joint resealing. CPR techniques are used to address a
variety of PCCP distresses that include corner deflection,
edge distress, faulting, load transfer problems, pumping,
bumps, and profile defects. CPR techniques help
improve pavement rideability, driving comfort, and
structural integrity and also restore deteriorated portions
and thus extend pavement life (106).

N Repair PCCP and HMA Overlay: This is a PCCP
rehabilitation technique involving either partial-depth
or full-depth patching of a deteriorated pavement
segment, followed by an HMA overlay. In the case of
partial-depth patching, the slab is not removed to its
full depth; in the case of full-depth patching, the entire
slab is removed and replaced. Repaired PCCP could
receive either a structural or non-structural overlay
depending upon the level of pavement deterioration
(97,134).

N PCC Overlay of Existing PCC Pavement: This treatment
involves placing a PCC overlay on an existing deterio-
rated PCCP in order to restore the pavement structural
capacity. PCC overlays are a suitable option for all types
of rigid pavement designs including jointed plain cement
concrete pavements (JPCP), jointed reinforced cement
concrete pavements (JRCP), and continuously reinforced
cement concrete pavements (CRCP). PCC overlay can be
used either as a relatively thick unbonded PCC overlay of
5–12 inches or a relatively thin bonded PCC overlay of
four-inch thickness. Unbonded overlays are used for
badly deteriorated pavements without removing the
original pavement, while bonded overlays are used for
relatively less-deteriorated pavements (135,136).
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N Crack-and-Seat PCCP and HMA Overlay: This rehabi-
litation technique is used for a badly deteriorated PCCP
pavement with the purpose of minimizing reflective
cracking. Cracking and seating of the existing slab into
smaller sections minimizes slab movements at joints and
cracks, thus preventing reflective cracking on an HMA
overlay. Using mechanical means, the PCC slab is
broken down into approximately one to three sq. ft.
pieces. Then, the broken PCC slabs are seated using
pneumatic rollers and overlaid with HMA (66).

N Rubblize PCCP and HMA Overlay: In this PCCP
rehabilitation technique, a badly deteriorated rigid pave-
ment is reduced completely using a resonant pavement
breaker or multi-head breaker to yield a base aggregate,
which is then overlaid using HMA. The reduction of the
slab into aggregate virtually eliminates the incidence of
reflective cracking. A recent study in Alabama found that
rubblization is an effective rehabilitation technique for an
aged concrete pavement (66,137).

5.4 Treatment Costs

For estimating the costs of the MR&R strategies, this
study used the unit cost of the different asset interven-
tions. The unit costs ($/lane-mile) for road reconstruction,
routine and periodic maintenance, and rehabilitation
treatments were calculated for Interstates, NHS (NIS),
and NNHS, for flexible and rigid pavements. Data were
collected from the contract data file in INDOT’s
database, which included contract ID, total agency cost,
date and year of construction, fiscal year of contract,
length (in miles), number of lanes, surface type, functional
class, etc. for all projects undertaken during 2001–2006.
Cost data were collected for crack sealing, microsurfacing,
thin HMA overlay, functional HMA overlay, structural
HMA overlay, resurfacing (Partial 3R), mill full-depth
and AC overlay, and reconstruction for flexible pave-
ments. For rigid pavements, cost data were collected for
pavement cleaning and joint sealing, CPR technique,
functional HMA overlay, repair PCCP and HMA
overlay, PCC overlay on PCC pavement, crack-and-seat
PCCP and HMA overlay, and rubblize PCCP and HMA
overlay. Where the database entries indicated the func-
tional class of the project, the unit costs ($/lane-mile) were
calculated separately for all of the three functional classes;
and where records were not available separately for each

functional class, the same unit cost was used across the
functional classes. All costs were brought to their
equivalent 2010 constant dollar values using FHWA’s
construction price indices (CPI) as follows:

CAY~CBY
CPIAY

CPIBY

ð5:1Þ

Where: CBY and CAY 5 cost of the treatment in the
analysis and base years, respectively; CPIAY and CPIBY

5 construction price indices in the analysis and base
years, respectively.

The cost for road reconstruction, rehabilitation, and
routine and periodic maintenance treatments in $/lane-
mile for the three functional classes are presented in
Tables 5.1 through 5.5.

5.5 Traffic Data Collection and Collation

5.5.1 Traffic Estimates for MR&R Strategy Formulation

For this study, traffic (AADT) data were obtained
for 6,265 road segments on Indiana’s road network.
The most recent traffic volume estimates covering the
entire state, from year 2007, were updated to the
analysis year (2010) using yearly adjustment factors
provided by INDOT (Part II Appendix F). Since trucks
are the major focus of this analysis, truck AADT was
estimated separately. The summary statistics of the
AADT and truck AADT for the three functional
classes are provided in Table 5.6.

This study used FHWA’s 13-vehicle classification
system. In this classification system, trucks are placed in
nine classes (class 5 to class 13). Data on truck traffic
composition (percentage of truck for each class) were
obtained from 38 WIM stations on the Indiana state
highway network (twenty-five on Interstates, seven on
NHS (NIS), and six on NNHS). These data were
collected during the months of March and April of
2011. The summary of the truck traffic composition
data is presented in Table 5.7 and is further explained
graphically in Figure 5.2. It can be noticed that each of
the highway functional classes are dominated by class 5
(two-axles, single unit trucks) and class 9 trucks (five-
axles, combination trucks). On Interstates, approxi-

TABLE 5.1
Average Agency Costs of Flexible Pavements Treatments—Interstate

Treatment Type

Unit Cost ($/Lane-Mile)—2010 Constant $

Sample SizeMean Minimum Maximum Std. Dev.

Thin HMA overlay $94,907 $46,737 $180,340 $47,689 10

Microsurfacing $22,380 $15,525 $27,424 $6,153 3

Crack sealing $2,815 $240 $14,463 $3,094 17

Chip seal (seal coating) $8,131 $2,534 $19,051 $9,458 3

Functional HMA overlay $89,481 $47,824 $409,619 $93,376 14

Structural HMA overlay $370,412 $44,347 $2,714,978 $659,441 14

Resurfacing (partial 3R) $152,905 $11,892 $408,182 $119,254 13

Mill full depth & AC overlay $171,846 $17,618 $380,455 $148,257 6

Road reconstruction $2,504,774 $517,855 $4,471,955 $1,125,679 9

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/0152



TABLE 5.2
Average Agency Costs of Flexible Pavements Treatments—NHS (NIS)

Treatment Type

Unit Cost ($/Lane-Mile)—2010 Constant $

Sample SizeMean Minimum Maximum Std. Dev.

Thin HMA overlay $88,107 $31,645 $206,770 $36,452 31

Microsurfacing $39,653 $20,422 $77,905 $21,911 7

Crack sealing $2,815 $240 $14,463 $3,094 17

Chip seal (seal coating) $8,131 $2,534 $19,051 $9,458 3

Functional HMA overlay $127,041 $56,667 $209,792 $46,198 31

Structural HMA overlay $179,513 $38,096 $537,124 $156,287 21

Resurfacing (partial 3R) $119,351 $14,125 $392,450 $69,534 160

Mill full depth & AC overlay $171,846 $17,618 $380,455 $148,257 6

Road reconstruction $1,706,498 $483,124 $2,469,084 $563,879 9

TABLE 5.3
Average Agency Costs of Flexible Pavement Treatments—NNHS

Treatment Type

Unit Cost ($/Lane-Mile)—2010 Constant $

Sample SizeMean Minimum Maximum Std. Dev.

Thin HMA overlay $84,635 $26,840 $250,695 $38,377 100

Microsurfacing $39,653 $20,422 $77,905 $21,911 7

Crack sealing $2,815 $240 $14,463 $3,094 17

Chip seal (seal coating) $8,131 $2,534 $19,051 $9,458 3

Functional HMA overlay $125,601 $20,332 $250,378 $52,368 81

Structural HMA overlay $207,831 $30,451 $448,338 $151,771 7

Resurfacing (partial 3R) $102,935 $8,695 $301,676 $56,552 396

Mill full depth & AC overlay $171,846 $17,618 $380,455 $148,257 6

Road reconstruction $1,706,498 $483,124 $2,469,084 $563,879 9

TABLE 5.4
Average Agency Costs of Rigid Pavement Treatments—Interstate

Treatment Type

Unit Cost ($/Lane-Mile)—2010 Constant $

Sample SizeMean Minimum Maximum Std. Dev.

Cleaning and joint sealing $212,847 $97,146 $36,280 $56,420 8

CPR $150,057 $24,027 $550,022 $173,050 7

HMA functional overlay on concrete $89,481 $47,824 $409,619 $93,376 14

Repair PCCP & HMA overlay $491,865 $2,883 $844,367 $345,803 15

PCCP overlay on PCCP pavement $737,585 $737,585 $737,585 — 1

Crack and seat PCCP & HMA overlay $519,405 $117,711 $209,844 $864,941 11

Rubblize PCCP & HMA overlay $757,057 $425,913 $1,256,176 $239,717 12

Road reconstruction $2,793,015 $358,469 $10,665,746 $2,918,320 12

TABLE 5.5
Average Agency Costs of Rigid Pavements Treatments—Non-Interstate

Treatment Type

Unit Cost ($/Lane-Mile)—2010 Constant $

Sample SizeMean Minimum Maximum Std. Dev.

Cleaning and joint sealing $212,847 $97,146 $36,280 $56,420 8

CPR $150,057 $24,027 $550,022 $173,050 7

HMA functional overlay on concrete $127,041 $56,667 $209,792 $46,198 31

Repair PCCP & HMA overlay $491,865 $2,883 $844,367 $345,803 15

PCCP overlay on PCCP pavement $737,585 $737,585 $737,585 — 1

Crack and seat PCCP & HMA overlay $440,847 $143,415 $324,704 $1,114,233 7

Rubblize PCCP & HMA overlay $757,057 $425,913 $1,256,176 $239,717 12

Road reconstruction $1,902,876 $334,427 $5,888,838 $1,461,856 16
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mately 90% trucks are class 9 or class 5. On NHS (NIS)
and NNHS, 85% and 87% respectively are trucks in
class 9 or 5. The next dominant classes are class 6 and 8.

5.5.2 Grouping of Pavement Families on the Basis of
Traffic Loading

In addition to surface type and functional classes,
pavements can also be classified on the basis of traffic

volume (AADT or truck AADT). Traffic loading
intensity can be measured in terms of the total number
of trucks or the total ESALs sustained by a pavement
section. Traffic loading affects the service life of
individual rehabilitation and maintenance treatments
(97). Generally, very high traffic levels are associated
with short pavement service life.

From the summary statistics presented in Table 5.6,
it can be noticed that there is wide variation in truck

TABLE 5.6
AADT and Truck AADT—Summary Statistics (110)

Details

Interstate Segments NHS (NIS) Segments NNHS Segments

AADT Truck AADT AADT Truck AADT AADT Truck AADT

Mean 45,477 10,396 12,696 1,282 4,316 402

Std. dev. 36,426 7,414 9,180 1,135 4,131 482

Minimum 3,900 243 500 17 15 10

Maximum 189,467 45,390 81,901 11,440 33,960 9,897

Total segments 429 2,075 3,761

TABLE 5.7
Truck Percentage by Functional Class

Functional/Truck Class 5 6 7 8 9 10 11 12 13

Interstate 17.38 2.49 0.33 2.94 72.09 0.54 3.07 1.08 0.08

NHS (NIS) 24.53 3.34 1.57 6.06 60.61 1.53 1.25 0.58 0.53

NNHS 43.91 3.71 0.96 7.48 42.40 0.82 0.45 0.16 0.13

Figure 5.2 Truck traffic percentage on different highway functional classes.
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traffic on the different highway functional classes in
Indiana. Thus, using a single traffic volume for all
MR&R strategies in each functional class will lead to
bias. Thus, in this study, each highway functional class
was further divided into four traffic sub-categories
(very high, high, medium, and low (Table 5.8)). Sub-
dividing the functional classes on the basis of truck
traffic can help generate surrogate variables for
pavement groups with different traffic loading levels,
and thus can yield more representative estimates of
MPDC.

5.5.3 Traffic Growth Factor

A correct estimation of traffic loading is necessary for
reliable estimation of marginal pavement damage cost.
For this study, traffic estimates were obtained from the
average daily traffic and commercial vehicles interactive
map provided by INDOT (110). For estimating the
future traffic, the appropriate traffic growth factor was
determined. The annual average traffic growth rates
were estimated using past traffic growth trends in
Indiana. Using the total traffic growth information
from year 2001–2010 (110), the compounded annual
growth rate of traffic was estimated using Equation 5.2.
The compounded annual growth rate of traffic on
Interstate, NHS (NIS), and NNHS was found to be,
+1.227%, 20.185% and 20.510% respectively.

CAGR 0,tnð Þ~ Truck AADT tnð Þ
Truck AADT t0ð Þ

� 	1
n

{1 ð5:2Þ

Where: CAGR 5 Compound annual growth rate;
Truck AADT(tn) 5 Truck AADT in year n; Truck
AADT(to) 5 Truck AADT in base year; n 5 number of
years.

It can be noticed that the statewide traffic growth has
generally remained low for the last ten years. Interstate

highways have seen an increase (average 1.227% yearly
traffic growth in last nine years). For NHS (NIS) and
NNHS highways, the traffic volume has decreased, as
indicated by their negative annual growth rate, which
could be due to the economic recession in the last few
years. For pavement design purposes, INDOT recom-
mends the use of 2.8% to 3.3% as the compound annual
growth rate (64). In view of the traffic growth pattern
noted for the past ten years in Indiana, this study used a
growth factor of 1.5%.

5.5.4 Road-use Measure

The selection of an appropriate road-use measure is a
vital step in the estimation of MPDC. Most past studies
have used vehicle-mile, mile/year, GVW-mile, and
ESAL-mile. The most commonly-used road-use mea-
sure is ESAL-mile or ESAL-Km. ESAL is the ratio of
the damaging effect of a non-standard axle load to that
of a standard axle load (72). The ESAL concept helps in
converting axles with different loads and configurations
to a standard axle of 18 kip. Thus, the damage to
pavement due to different loads (vehicles having single
and multiple axles) is converted to the damage from a
standard axle of 18,000 lbs. The data in the present
study were obtained from the ‘‘total ESAL class by
hour’’ monthly report generated from INDOT’s WIM
equipment. The estimated ESAL values for flexible and
rigid pavements are summarized in Table 5.9.

5.6 Effectiveness of Reconstruction, Rehabilitation, and
Maintenance Treatments

For the purpose of formulating MR&R strategies for
PDC estimation, it is necessary to establish the
effectiveness of different rehabilitation and periodic
maintenance treatments and also to specify the rest
period (i.e., when to apply the first periodic main-

TABLE 5.8
Sub-Groupings of Highway Functional Classes on Basis of Traffic Loading

Functional Class Categories (Truck Traffic) Truck Traffic Range No. of Road Segments Sub-group Truck AADT

Interstate Very high Truck AADT . 10,000 190 16,768

High 10,000 . truck AADT . 8,000 57 8,694

Medium 8,000 . truck AADT . 6,000 48 6,964

Low Truck AADT , 6,000 133 3,322

Total No. of road segments 429

NHS (NIS) Very high Truck AADT . 4,000 185 5,072

High 4,000 . truck AADT . 3,000 163 3,378

Medium 3,000 . truck AADT . 2,000 607 2,360

Low Truck AADT , 2000 1109 858

Total No. of road segments 2075

NNHS Very high Truck AADT . 1,000 306 1,566

High 1,000 . truck AADT . 500 661 692

Medium 500 . truck AADT . 250 1049 356

Low Truck AADT , 250 1746 120

Total No. of road segments 3761

Grand total No. of road segments 6,265

55Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/01



tenance treatment to a newly-reconstructed pavement).
In this study, pavement performance modeling was
carried out to establish the rest periods.

5.6.1 Estimation of Rest Period for Newly-Reconstructed
Pavements

For establishing the rest period, separate models
were developed for each pavement family using the
following steps:

N Data Collection and Preparation: Data were collected
from different sources for a number of road segments.
The major data items included road inventory, pavement
condition, contract information, traffic, and climate. The
road inventory data provided basic information about
contract identification, start and ending points, func-
tional class, and county and district locations. Contract
data from the INDOT database, which provided infor-
mation on newly-(re)constructed pavements included:
contract cost, fiscal and letting year, contract identifica-
tion number and location, number of lanes, and length of
(re)constructed pavement. Pavement condition data
included the IRI. Traffic data, which included the
AADT, truck AADT, and traffic growth rate for the
selected pavement segments, were obtained from INDOT
traffic monitoring sections (110). Climate data, which
included the freeze index, annual number of freeze thaw
cycles, average annual precipitation, and average number
of wet days in a year, were obtained from INDIPAVE
2000, a database established using data from the National
Oceanic and Atmospheric Administration (NOAA)
database (138).

N Selection of Response and Explanatory Variables: For
effectiveness evaluation, an appropriate performance
indicator needed to be selected as a first step. INDOT
collects data on IRI, Pavement Condition Rating (PCR),
friction, and rutting. In this study, IRI was used as the
performance indicator because it generally represents the
road-user perception and also serves as a basis for repair
decisions at many highway agencies (139). IRI is a
measure of pavement bumpiness in terms of the number
of inches/mile. IRI data are relatively inexpensive and
easy to collect (103) and is therefore widely used for
highway asset performance modeling. The explanatory
variables considered for performance modeling are
functional classification (surrogate variable for construc-

tion and maintenance quality), pavement age (surrogate

for combined traffic and climatic loading), truck traffic,
and climatic conditions.

N Selection of Measure of Effectiveness: The intervention
service life, the increase in the area bounded by the
performance curve, or the increased average pavement

condition over the intervention service life, are the three
most widely-used non-monetized measures of effective-
ness (97). For rest period estimation, service life was used

as the measure of effectiveness because it is consistent
with the concept of a rest period. This service life gives an
estimate of the time when a newly (re)constructed

pavement needs a periodic maintenance in order to
preserve the structural integrity of the pavement.

N Mathematical Form: Ordinary least square (OLS) regres-
sion was used to develop performance models for both

flexible and rigid pavement. Separate models were
developed for Interstate, NHS (NIS), and NNHS. The
functional form of the pavement performance models

developed in this study is shown in Equation 5.3. Using
the developed performance models, the expected time
from (re)construction of a pavement to the application of

the first periodic maintenance was estimated using
Equation 5.4. The results are summarized in Table 5.10.

yi~EXP b0zb1|AATT|tzb2|AAFI|tð Þ ð5:3Þ

Where: yi is the value of the pavement performance
measure (IRI) for a (re)constructed pavement segment
i, in year t; AATT (t) 5 is the product of the annual
truck traffic (in millions) and the time since the
pavement was (re)constructed, thus representing the
total impact of traffic on the pavement since recon-
struction; AAFI (t) 5 is the product of the average
annual freeze index (in thousands of degree-days) and
the time since the pavement was reconstructed, thus
representing the total impact of climate on the
pavement since (re)construction; b0, b1 and b2 are
model parameters.

Making t the subject of the equation, it is possible to
estimate the rest period for an established threshold, if
the average traffic and climatic loading are known, as
follows:

t~
ln yið Þ{b0

b1| AATTð Þzb2| AAFIð Þ ð5:4Þ

This approach has been widely used in pavement
performance modeling in Indiana in the recent past
(69,92,98). Statistical Analysis Software (SAS) (140)
was used for the model estimation, and standard model
building procedures were used. The summary of the
model results and estimated rest periods are presented
in Tables 5.11 to 5.13.

5.6.2 Effectiveness of Rehabilitation and Maintenance
Treatments

The effectiveness of individual rehabilitation and
periodic/routine maintenance treatments that comprise
an MR&R strategy is another evaluation variable

TABLE 5.9
ESAL Factors for Different Highway Functional Classes

Truck

Class

Highway Functional Class

Interstate NHS (NIS) NNHS

Flexible Rigid Flexible Rigid Flexible Rigid

5 0.0646 0.1014 0.0638 0.1002 0.0837 0.1314

6 0.5245 0.8235 0.5765 0.9051 0.8053 1.2643

7 2.5597 4.0187 2.0927 3.2855 2.8600 4.4902

8 0.5758 0.9040 0.2741 0.4303 0.7942 1.2469

9 1.3676 2.1471 1.1658 1.8303 1.2020 1.8871

10 1.5687 2.4629 1.6285 2.5567 1.9547 3.0689

11 1.1356 1.7829 0.8341 1.3095 1.0558 1.6576

12 0.8923 1.4009 1.3460 2.1132 3.9537 6.2073

13 3.0816 4.8381 3.7477 5.8839 3.0727 4.8241
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TABLE 5.10
Range of Treatment Service Lives for MR&R Strategy Formulation

Pavement Type Treatment Type

Range of Service Life

Overall Interstate NHS (NIS) NNHS

Flexible Structural HMA overlay 7–18 7–9 10–14 15–18

Functional HMA overlay 6–14 6–9 10–11 12–14

Resurfacing (partial 3R) 7–15 7–9 10–12 13–15

Mill full depth and AC overlay 7–14 7–9 10–11 12–14

Thin HMA overlay 6–12 6–7 8–9 10–12

Microsurfacing 5–9 5 6–7 8–9

Chip seal 4 4 4 4

Asphalt crack seal 3 3 3 3

Rigid Repair PCCP & HMA overlay 10–19 10–14 15–19

PCCP overlay on PCC pavement 17–25 17–20 21–25

Crack & seat PCCP & HMA overlay 10–16 10–15 16–20

Rubblize PCCP & HMA overlay 10–16 10–14 15–16

Crack seal 3 3 3

CPR techniques 6–8 6 7–8

Cleaning and sealing of joints 8 8 8

Source: (64,69,88,97,117).

TABLE 5.11
Pavement Performance Models for Flexible Pavement

Highway Class Coefficient Coefficient Value t-value P-value R2 N

Interstate Constant 4.073 202.16 ,0.0001 0.56 230

AATT 0.015 5.43 ,0.0001

AAFI 0.075 9.43 ,0.0001

NHS (NIS) Constant 4.118 98.10 ,0.0001 0.39 75

AATT 0.102 6.81 ,0.0001

NNHS Constant 4.092 252.80 ,0.0001 0.88 103

AATT 0.018 3.98 0.0001

AAFI 0.053 14.01 ,0.0001

TABLE 5.12
Pavement Performance Models for Rigid Pavement

Highway Class Coefficient Coefficient Value t-value P-value R2 N

Interstate Constant 4.386 261.01 ,0.0001 0.82 126

AATT 0.015 18.82 ,0.0001

AAFI 0.005 2.59 ,0.0108

Non-IS Constant 4.131 249.85 ,0.0001 0.85 88

AATT 0.009 2.09 0.0394

AAFI 0.089 9.24 ,0.0001

TABLE 5.13
Estimated Rest Periods (Years) for Different Traffic Loads

Flexible Pavement Rigid Pavement

Interstate NHS (NIS) NNHS Interstate Non-IS

Truck Traffic Rest Period

Truck

Traffic Rest Period

Truck

Traffic Rest Period Truck Traffic Rest Period

Truck

Traffic Rest Period

16,768 10 5,072 10 1,566 20 16,768 10 3319 17

8,694 14 3,378 12 692 20 8,694 19 2035 17

6,964 15 2,360 17 356 20 6,964 23 1358 18

3,322 18 858 20 120 20 3,322 25 489 18
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which can significantly impact the results of MPDC
estimates. There has been extensive research in Indiana
and elsewhere on the estimation of treatment effective-
ness. The most widely-used measure of effectiveness for
LCCA and MPDC estimation is treatment service life.
The treatment service life for various periodic main-
tenance and rehabilitation treatments commonly-used
in Indiana are presented in Table 4.12 in Chapter 4.
For this study, different service lives of a given
treatment were used for different highway functional
classes (Table 5.13), depending on the intensity of
traffic loading. Within a highway functional class,
treatment service lives were made to vary with traffic
loading (shorter treatment service lives for higher traffic
loading and vice versa).

5.7 Formulation of MR&R Strategies

After establishing pavement families, collecting cost
and traffic data, estimating intervention effectiveness,
and selecting the road-use measure, pavement MR&R
strategies were formulated. Pavement MR&R strategies
were established for each functional class. For each
traffic level, five MR&R strategies for flexible pave-
ments and four MR&R strategies for rigid pavements
were established. Thus, a total of 60 MR&R strategies
were established for flexible pavements and 32 for rigid
pavements (Table 5.14). For a given pavement segment,
different MR&R strategies represent a combination of
different M&R treatments over one life cycle. The
traffic loading levels (very high, high, medium, and low)
that were used for the MR&R strategies are the same as
those presented in Table 5.8 of this study. The life-cycle
M&R profiles established in this study are provided in
Part II Appendix G.

For each of these pavement groups, MR&R
strategies were developed over a 50-year analysis
period. Figure 5.3 presents the case of a pavement
segment with a 50-year life cycle. P is the initial
construction cost and the cost of all other main-
tenance activities during the first life cycle (first 50
years of pavement life). R is the total cost during the
subsequent life cycle of the pavement. The cost in the
subsequent life cycle (next 50 years) is the sum of
reconstruction, rehabilitation, and periodic (preven-
tive) and routine maintenance costs. Figure 5.4 pre-
sents a typical pavement MR&R strategy, which

shows that all of the pavement maintenance activities
that can take place during a single life cycle, N. It is
assumed that the pavement is reconstructed every 50
years (thus incurring a cost R, every 50 years) to
perpetuity. Typical pavement MR&R strategies for-
mulated in this study for flexible pavement Interstate,
NHS (NIS), NNHS and rigid pavement Interstate and
non-Interstate are shown in Figures 5.4 to 5.8. The
remaining MR&R strategies for flexible and rigid
pavements are provided in Part II Appendix G.

5.8 Calculation of Life-Cycle Costs and Traffic Loadings
Using the Formulated Strategies

The MR&R strategies presented in the previous
section were formulated to provide a broad but realistic
picture of the actual trends of pavement maintenance
expenditures and the consumption of pavements by
truck loads. These strategies reflect the highway agency
decision-making process typically made to address
deteriorating pavements. Interstate highways generally
attract higher truck traffic and therefore receive a higher
frequency of treatment applications. It must be noted,
however, that the high traffic volume on Interstate
highways might be compensated by their superior
construction standards. On Interstate highways, the
deleterious effects of high traffic loads outweigh the
redeeming virtues of superior design standards. This
probably explains the high frequency of M&R treat-
ment application observed at Interstate highways
compared to non-Interstate highways. From the for-
mulated strategies, the total cost and traffic experienced
over the pavement life cycle were determined.

5.8.1 Estimating the Overall Cost of MR&R Strategies

For each pavement family, the cost of each MR&R
strategy over a 50-year analysis period was determined.
For this estimation, an interest rate of 4% was used as
recommended by INDOT and FHWA (64,90).
Figure 5.4 represents a typical MR&R strategy over a
50-year analysis period. For this pavement, the total
MR&R cost over the analysis period is the sum of the
reconstruction, rehabilitation and periodic and routine
maintenance costs over that period. Using interest
equations, the present worth (PW) of the MR&R cost
can be found as follows:

TABLE 5.14
Life-Cycle M&R Profiles for Different Highway Functional Classes

Surface Type Functional Class

No. of M&R Profiles for Each Traffic Loading Level

Very High High Medium Low

Flexible Interstate 5 5 5 5

NHS (NIS) 5 5 5 5

NNHS 5 5 5 5

Rigid Interstate 4 4 4 4

Non-Interstate 4 4 4 4
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Figure 5.3 Typical MR&R strategy over an infinite analysis period.

Figure 5.4 MR&R strategy—flexible pavement (Interstate).

Figure 5.5 MR&R strategy—flexible pavement (NHS non-Interstate).

Figure 5.6 MR&R strategy—flexible pavement (non-NHS).
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Where: PW(P)M&R 5 present worth of total recon-
struction, rehabilitation and maintenance costs of a
MR&R strategy over a 50-year analysis period; r 5 real
discount rate; t 5 year of application of rehabilitation,
periodic or route maintenance treatment; m 5 number
of rehabilitation, and periodic or routine maintenance
applied to the pavement during the partial life cycle.

After estimating the cost of all MR&R strategy over
a 50-year analysis period, the equivalent uniform
annual cost (EUAC) to perpetuity is calculated as
follows:

EUACMR&R~ PW Pð ÞMR&R


 �
|r ð5:6Þ

Where: EUACMR&R 5 equivalent uniform annual
cost of MR&R strategy over a 50-year analysis period.

5.8.2 Traffic Loading Estimation for MR&R Strategies

The estimation of traffic loading was focused on the
determination of the annual average number of ESALs
experienced by the pavement. The ESALs estimation
involved the sum of the ESALs experienced during the
50-year analysis periods. This study used a growth

factor of 1.5% to estimate the total ESALs over 50-year
analysis periods. The total ESALs applied to the
pavement is estimated as the sum of the ESALs of
individual vehicles. Thus, the ESALs for one pavement
life cycle (50-year period) were estimated as follows:

X50

k~1

ESAL~Truck AADT � 365�

Dd �Gf � Ld �
XL

i~1

LEFi �%Classið Þ

ð5:7Þ

Where: ESAL 5 Total ESAL during one pavement
life cycle; k 5 Analysis period (50-years); truck AADT
5 Annual Average Daily Truck Traffic; Dd 5

Directional distribution factor; Gf 5 Growth factor
during the analysis period; Ld 5 Lane distribution
factor; LEFi 5 Load equivalency factor contributed by
truck belonging to class i; %Classi 5 Percentage of
trucks in Class i; L 5 number of truck classes.

5.9 Pavement Damage Cost Estimation

Sixty MR&R strategies for flexible and thirty-two
for rigid pavements were established in this study. Each
MR&R strategy helped to generate one observation for
the pavement damage cost model development. For
each formulated strategy, the data and the estimated
impacts include the total life-cycle cost and total life-
cycle usage (loading). From the total life-cycle cost, the

Figure 5.7 MR&R strategy—rigid pavement (Interstate).

Figure 5.8 MR&R strategy—rigid pavement (non-Interstate).
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annualized life-cycle cost was determined. Also, from
the total life-cycle loading, the annual average loading
was calculated. By relating the two parameters, the
marginal pavement damage cost was derived. This
calculation was done for each pavement family. The
various data items used for model development are
presented below:

N EUAC: The EUAC was used as the dependent variable,
and the data for this variable were obtained as the cost of
the individual MR&R strategies.

N Annual ESAL: For each MR&R strategy, the average
annual ESALs sustained by the pavements were esti-
mated and used as one of the explanatory variables.

N Pavement Type: MR&R strategies were developed
separately for flexible and rigid pavements. The type of
pavement was represented as an indicator variable (1 if
rigid pavement, 0 otherwise).

N Number of Rehabilitation Treatments: Each MR&R
strategy had a different number of rehabilitations
treatments during one full life cycle, depending on the
traffic loading and pavement type. The number of
rehabilitation treatments was used as one of the
explanatory variables.

N Number of Periodic Maintenance Treatments: The fre-
quency of periodic maintenance depends upon the traffic
loading, type of pavement, and highway functional class.
The number of periodic maintenance treatments during
the full life cycle was simply determined from the MR&R
strategy and used as an explanatory variable in the
model.

N Highway Functional Class: Separate MR&R strategies
were formulated for different highway functional classes.
Therefore, the functional class was used as an indicator
variable in the model.

Having generated the data for EUAC and annual
ESALs experienced by the pavement, models were
estimated for the marginal pavement damage cost using
OLS regression techniques and SAS software (140)
(Table 5.15). Several alternative functional forms were
tested and evaluated for the model. The general
functional forms of the investigated models are:

Annualized Cost~f Xð Þ ð5:8Þ

Where: Xð Þ is a vector of pavement loading and
other attributes such as pavement age and surface type.
The functional form that was selected is:

EUACMR&R~b0zb1 � ln ESALsð Þzb2 � PTYPE ð5:9Þ

Where: b0, b1, b2 5 Constant term and parameter
estimates for model explanatory variables; EUAC(MR&R)

5 Equivalent uniform annual cost per lane-mile of
pavement segment over a 50-year analysis period; ESALs
5 Average annual number of equivalent single axle load
per lane-mile; PTYPE 5 Pavement type indicator
variable (1 if pavement is rigid, 0 otherwise).

The estimated model suggests that the pavement
MR&R cost depends on traffic loading (average
annual ESALs), and pavement type and age. The
model estimates are all intuitive. The model indicates
that, all else being equal, higher traffic loadings
(higher number of annual ESALs) result in higher
pavement repair costs. Pavements that sustain high
annual traffic loadings generally have higher main-
tenance and rehabilitation costs. The model results
show that the pavement type has a significant
correlation with the pavement repair cost; namely,
rigid pavements were found to have higher EUAC
(MR&R) compared to flexible pavements. This is
intuitive because the reconstruction cost of rigid
pavements is relatively high.

The estimation of marginal pavement damage cost
involves two steps: (1) estimation of a suitable EUAC
(MR&R) model as a function of different explanatory
variables, and (2) differentiation of the estimated model
with respect to the road-use measure (ESAL). The
estimated function (Equation 5.9) was differentiated
with respect to annual average ESALs to obtain the
marginal pavement damage cost as follows:

MPDC~
b1

ESALs
ð5:10Þ

Where: MPDC 5 Marginal pavement damage cost
($/ESAL-mile); ESALs 5 Average annual number of
equivalent single axle load per lane-mile.

Using the developed function, the MPDC were
estimated for any highway functional class and traffic
level. The average annual ESALs for three highway
functional classes were calculated using available
traffic data. The estimated MPDC are presented in
Table. 5.16.

Overall, the marginal pavement damage cost esti-
mates range from $0.006 per ESAL-mile on the
Interstate system to $0.218 per ESAL-mile on NNHS
(state route). The marginal pavement damage costs are
low for NHS Interstate, but high for NNHS. These
results are consistent with findings from past studies
(50,52). The results are also consistent with those of a
Louisiana study that showed that an increase in truck

TABLE 5.15
Model Estimates for PDC Estimation Using MR&R Strategy

Coefficient Coefficient Value t-value P-value R2 N

Constant 255,545 23.94 ,0.0001 0.74 92

ln(ESALs) 11,732 11.16 ,0.0001

PTYPE 26,318 8.19 ,0.0001

TABLE 5.16
Estimates by Highway Functional MPDC Class

Highway Functional Class

Marginal PDC in

$/ESAL-mile (2010 Constant $)

Interstate 0.0072

NHS (NIS) 0.0652

NNHS 0.2559

Mean 0.1095
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loading limits had a more deleterious effect on non-
Interstate pavements compared to Interstate pavements
(56). The primary reasons for this difference in unit cost
include the traffic volume and design standards
between lower class and higher class highway pave-
ments. The traffic volume on Interstates is almost eight
times more than that on NHS (NIS) and 25 times
higher than that on NNHS. Since the Interstates have
far more users, the cost of pavement damage is spread
out over their broader base of users. On the other hand,
the number of users on NHS (NIS) and NNHS are
relatively fewer, thus resulting in a higher cost share per
user.

All highway pavements are designed to carry a traffic
loading that is forecast at the planning or design phase,
for the design life of the pavement for rigid or flexible
pavements. The major design consideration for pave-
ment thickness is the expected number of ESALs over
the entire design life. Since Interstate pavements are
expected to carry higher traffic volumes (more ESALs)
over their design life, these pavements have higher
thicknesses and superior design standards compared to
NHS (NIS) and NNHS pavements. Since the relation-
ship between pavement thickness and traffic loading is
non-linear (i.e., the pavement strength increase with the
seventh power of thickness), Interstate pavements can
sustain a much higher number of ESALs compared to
non-Interstate pavements (53,141,142).

Figure 5.9 presents an overall picture of the change
in MPDC with a change in the annual ESALs. When
the traffic volume is low, there is reduced deterioration;
however the lower cost of this damage is shared by
fewer vehicles, resulting in a higher MPDC compared
to a high traffic volume. When traffic levels are high,
economies of scale starts to kick in, resulting in a lower
MPDC. Similarly for all three functional classes, the
MPDC decreases with an increase in annual ESALs.
For Interstate pavements, on average, the total cost
(construction plus life-cycle maintenance) per lane-mile
is 1.5 times higher compared to NNHS (Table 5.17).
However, (a) there are far more users of Interstates,
which distributes the cost to a larger base of users, and
(b) the pavement thickness on Interstate highways is
greater compared to other highways, thus resulting in a
lower MPDC.

In comparing marginal pavement damage costs
across the different highway functional classes, another
point of consideration is the average GVW vs. the
average ESALs for different vehicles. If the GVW of
trucks on Interstates highways is considerably higher
than the GVW of trucks on non-Interstates, then the
total ESALs generated on Interstates highway will be
higher, resulting in a lower MPDC (since the cost will
be spread out to more users). To illustrate this point,
consider a hypothetical scenario in which both an
Interstates highway and a state route each carry 2,000
trucks per day. Trucks moving on these two different
highway systems have the same configuration but
higher loads are allowed on the Interstate compared
to the state route. Trucks carrying heavier loads on
Interstate translate into higher number of ESALs.
Assume that each truck on the Interstate generates 3
ESALs, while each truck on the state route generates 2
ESALs. If traffic remains constant, then the Interstate
and state route will approximately sustain 109.5M and
73M ESALs, respectively, over the 50-year life cycle.
This shows that the total ESALs on the Interstate are
about 1.5 times the ESALs on the state route. As the
total 50-year spending on Interstate is about 1.5 times
higher than state highway (Table 5.17), the impact of
additional ESALs on Interstates is offset. Consider a
similar hypothetical scenario in which the GVW limits
are the same as the Interstate and state highway
systems. In that case, the same total number of
ESALs will be generated on both highway types,
assuming the same annual traffic. Since the total
spending during one life cycle (50 years) on the
Interstate highway is greater than the spending on the
state route, the former will have a higher MPDC.

In this study, the average truck traffic and GVW
were used for different highway functional classes for
MPDC estimation. The GVWs for different vehicle
classes are graphically shown in Figure 5.10. For each
truck class, there is no marked difference in truck GVW
across the highway functional classes; therefore, the
average ESALs generated in each class is expected to be
approximately the same across the highway classes.
When the individual vehicles have the same average
ESALs for different highway functional classes, then
the deciding factors for MPDC are the total truck

Figure 5.9 Variation of MPDC with ESALs.
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traffic and the total spending over a selected analysis
period. As mentioned earlier in this chapter, the average
spending for Interstates is 1.5 times higher than for
non-Interstates but Interstates have traffic that is eight
and 25 times higher than for NHS (NIS) and NNHS,
respectively. Thus, the higher spending for Interstates is
offset by their high traffic volume, thus resulting in a
lower MPDC for that functional class compared to
others.

To illustrate this point further, consider two pave-
ment segments A and B in the same highway functional
class with similar strength, design standards, and
average spending but carry different levels of truck
traffic over a selected analysis period of 50 years. It is
further assumed that trucks moving on these two
segments have the same configuration and same
average GVW. The average daily truck traffic on
pavement A is 4,000 and on pavement B is 6,000; and,
on average, each truck generates 2 ESALs. Assuming
constant traffic over the analysis period, approximately
146 million and 219 million ESALs will be sustained by
pavements A and B respectively, over the 50-year
analysis period. Segment B sustained a higher number
of ESALs compared to pavement A (more users to
share cost); thus, the MPDC for B is lower than for A.
The logic is similar to that of the present study. The
model estimated in this study for EUAC (MR&R) is
based on average traffic and expenditures on different
highway functional classes over an infinite analysis

period; therefore, the estimated MPDCs are the average
values for each functional class.

5.10 MPDC Estimation for Flexible and Rigid
Pavements

In the previous section, for proof-of-concept pur-
poses, the MPDC was estimated using a single model
for both flexible and rigid pavements. In this section,
separate models and MPDC estimates are presented for
both pavement types. The data estimation, model
building, and MPDC estimation steps are the same as
explained in Sections 5.8 and 5.9 of this study.
Tables 5.18 and 5.19 present the models developed for
flexible and rigid pavements; and the MPDC estimates
are presented in Table 5.20.

The findings are consistent with overall model results
in Section 5.9. The estimated models show that
pavement MR&R costs depend on pavement type and
ESALs. The MPDC results suggest that using the
available data rigid pavements seemingly have a higher

TABLE 5.17
Summary of Average Cost Data for Pavement Life Cycle

Route Type

Present Worth of MR&R Cost for 50-Year Life Cycle ($2010)

EUAC ($2010)Total Reconstruction Rehab Periodic Maintenance Routine Maintenance

Interstate $2,762,000 $2,505,000 $178,101 $63,318 $15,472 $55,223

NHS (NIS) $1,873,000 $1,707,000 $92,268 $45,232 $15,669 $37,460

NNHS $1,809,000 $1,707,000 $38,725 $46,262 $17,550 $36,180

Figure 5.10 Comparison of GVW on different highway functional classes.

TABLE 5.18
Model Estimates for MPDC Estimation—Flexible Pavement

Coefficient Coeff. Value t-value P-value R2 N

Constant 242755 22.60 ,0.011 0.57 60

ln(ESALs) 10771 8.78 ,0.0001
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overall life-cycle cost (EUAC (MR&R)) compared to
flexible pavements. The results also suggest that young
pavements have lower repair costs (EUAC (MR&R))
compared to old pavements, which is intuitive.

5.11 Impact of Climate on MPDC Estimates

It is a well-established fact that the climate has a
significant impact on pavement performance. Rutting
can occur in flexible pavements due to plastic deforma-
tion of bitumen in warm regions. Similarly, low
temperature can make flexible pavements brittle and
can result in thermal cracking (129). Rigid pavements
are more vulnerable to expansion and contraction
forces due to temperature changes. Freezing in cold
weather and thawing in the spring months results in the
loss of subgrade strength in both flexible and rigid
pavements. Besides temperature, precipitation plays a
significant role in pavement deterioration. Not only can
subgrade heaving take place due to increased moisture
content, but also rain water can enter the subgrade
through cracks and joints and can result in pothole
formation and removal of fine particles, thus resulting
in loss of pavement strength (13,143–146).

A number of past studies have used empirical data
to confirm and quantify the impact of climate on
pavement performance (34,36). Also, a number of
studies in PDC estimation recognized this issue (17,23–
25,36,50). It is important to recognize that the state of
Indiana has significant differences in its climate due to
variations in physical geographical features which
extend from the Great Lakes areas in the north to
mountain ranges in the south. To allow for climatic
variations across different parts of the state, climatic
variables, such as the mean annual temperature, the
average annual precipitation, the average number of
wet days, and the average annual freeze index have
been used in past studies (69,94). For incorporating
the impact of climate on PDC estimation, different
methodologies have been adopted in past studies.
Also, different studies have found different load and

non-load-related shares of PDC. Martin (34) found that
load-related PDC varied from 88% to 98%. The Federal
HCA study of 1997 determined that load-related PDC
varied from 78% to 89% for different pavement types
and different pavement repair expenditures (17). Li and
Sinha (36) in an Indiana study that was focused on
estimation of load- and non-load-related share of
pavement rehabilitation and maintenance expenditure
found that load-related pavement rehabilitation and
maintenance expenditure varies from 28% to 78%

depending on pavement type. In past PDC estimation
studies, the climatic effects were not accounted for
(40,41,48,50), considered as some percentage of total
PDC (52), or incorporated explicitly (34,36,50,53). The
present study on the basis of the results from the past
studies, uses an 85–15% split of pavement damage
between traffic loading and climate, respectively. The
MPDC estimates with recommended split to be charged
on different highway classes are summarized as shown
in Table 5.21.

5.12 Impact of Non-Consideration of Reconstruction or
Maintenance Costs on MPDC Estimates

Most of the past MPDC estimation studies con-
sidered rehabilitation only and thus did not account for
the cost of reconstruction and maintenance. Details of
these studies are discussed in Section 3.4 of this report.
Some of those studies used the so-called theoretical
approach to analyze a single pavement segment for
MPDC estimation, based on the assumption that
MPDC is comprised of overlay cost only (rehabilitation
at fixed intervals) and thus excluded all other categories
of pavement damage repair (48–50,52,54). Also, these
studies may have used a single repeated overlay
(applied at regular intervals) in order to have a more
tractable mathematical formulation; however, by not
incorporating reconstruction and periodic and routine
maintenance and their associated costs, it seems that
these studies underestimated the true MPDC. A
number of studies that used empirical approaches
generally considered both maintenance (periodic and
routine) and rehabilitation cost for MPDC estimation
but did not consider reconstruction cost. Only Hajek et
al. (35) and Ghaeli et al. (39) considered reconstruction
cost for MPDC estimation; however, both studies did
not distinguish between strength-driven and capacity-
driven expenditures as they did not distinguish between

TABLE 5.20
MPDC Estimates for Flexible and Rigid Pavements

Highway Functional Class

Marginal PDC ($/ESAL-mile)—

2010 Constant $

Flexible Rigid

Interstate 0.0066 0.0083

NHS (NIS) 0.0599 0.0756

NNHS 0.2349 0.2967

Mean 0.1005 0.1269

TABLE 5.19
Model Estimates for MPDC Estimation—Rigid Pavement

Coefficient Coefficient Value t-value P-value R2 N

Constant 255576 22.008 ,0.053 0.62 32

ln(ESALs) 13601 6.966 ,0.0001

TABLE 5.21
Load- and Non-Load-Related MPDC Estimates

Highway Functional Class

Marginal PDC ($/ESAL-mile)—2010

Constant $

Load Share Non-Load Share

Interstate 0.006 0.001

NHS (NIS) 0.055 0.010

NNHS 0.218 0.038

Mean 0.093 0.016
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new construction and reconstruction costs. In order to
study the impact of non-consideration of reconstruction
and/or maintenance cost on MPDC estimation, this
study considers four different scenarios for pavement
repair categories (Table 5.22) as discussed below.

5.12.1 Scenario 1—MPDC Estimation Considering All
Relevant Pavement Damage Repair Costs

For MPDC estimation purposes, all pavement
damage-related costs were considered. The steps involved
are summarized as follows:

N The MR&R strategies over a 50-year analysis period
were developed considering all of the costs associated
with pavement damage repair (reconstruction, rehabilita-
tion, and periodic and routine maintenance) for 92
different cases of flexible and rigid pavements. The M&R
strategies are identical to those discussed in Section 5.7.2
of this study.

N From the developed MR&R strategies, life-cycle costs
and usage levels were estimated as discussed in Section
5.8 of this study.

N Model calibration and MPDC estimation followed the
same steps as discussed in Section 5.9 of this study.

N The estimated model and MPDC estimates are summar-
ized in Tables 4.25 and 4.26.

5.12.2 Scenario 2—Non-Consideration of Reconstruction
Cost

Scenario 1 differs from Scenario 2 only in terms of
cost, as the former considers reconstruction cost. Figure
5.11 represents an MR&R strategy over a 50-year life
cycle for a flexible pavement where reconstruction cost
was not considered. In this scenario, rehabilitation, and
periodic and routine maintenance costs were considered

for estimating MPDC. Similar MR&R strategies for
other cases of flexible and rigid pavements were
developed. The model calibration and MPDC estima-
tion steps remained the same as discussed in the
previous section and the estimated model and MPDC
estimates are presented in Tables 5.23 and 5.24.

5.12.3 Scenario 3—Non-Consideration of Reconstruction
and Routine Maintenance Cost

In this scenario, the reconstruction and routine
maintenance costs were not considered (only rehabilita-
tion and periodic maintenance costs were considered).
Figure 5.12 represents a MR&R profile for a flexible
pavement where reconstruction and routine costs were
not considered. Similar MR&R strategies for other
cases of flexible and rigid pavements were developed.
Using these MR&R strategies, models were developed
for MPDC estimation. All other steps for MPDC
estimation remain the same as discussed in Sections 5.8
and 5.9. The estimated model and MPDC estimates are
summarized in Tables 5.23 and 5.24, respectively.

5.12.4 Scenario 4—Rehabilitation at Fixed Intervals

This scenario has been used in a number of past
studies (49,50,52,54). This scenario only considers
rehabilitation cost and ignores all other pavement
damage-related costs. Figure 5.13 represents a MR&R
strategy for a flexible pavement where reconstruction
and routine and periodic maintenance cost were not
considered. In this MR&R strategy, only rehabilitation
cost is considered. Similar MR&R strategies for other
cases of flexible and rigid pavements were developed
depending on traffic loading, the time of application of
the first periodic maintenance treatment (the rest

TABLE 5.22
Different Cost Consideration Scenarios for MPDC Estimation

Cost Scenario Pavement Damage Related Cost Considered

Scenario 1 All relevant pavement damage repair costs considered

Scenario 2 Non-consideration of reconstruction cost

Scenario 3 Non-consideration of reconstruction and routine maintenance cost

Scenario 4 Rehabilitation at fixed intervals

Figure 5.11 Scenario 2—Non-consideration of reconstruction cost in MPDC estimation.
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TABLE 5.23
Model Estimates for Different Cost Scenarios of Pavement Repair Category

Cost Scenario Coefficient Coefficient Value t-value P-value R2 N

Scenario 1: All relevant costs considered Constant 255545 23.93 ,0.0001 0.74 92

ln(ESALs) 11732 11.16 ,0.0001

PTYPE 26318 8.19 ,0.0001

Scenario 2: Non-consideration of reconstruction cost Constant 223696 27.84 ,0.0001 0.90 92

ln(ESALs) 2420 10.62 ,0.0001

PTYPE 16093 23.11 ,0.0001

Scenario 3: Non-consideration of reconstruction

and routine maintenance cost

Constant 218573 25.58 ,0.0001 0.64 92

ln(ESALs) 1967 7.85 ,0.0001

PTYPE 5802 7.57 ,0.0001

Scenario 4: Rehabilitation cost at fixed intervals Constant 215828 25.97 ,0.0001 0.64 92

ln(ESALs) 1572 7.87 ,0.0001

PTYPE 4480 7.34 ,0.0001

TABLE 5.24
MPDC Estimates for Different Cost Scenarios of Pavement Repair Category

Cost Scenario

MPDC ($/ESAL-mile—2010 Constant $
% Difference in MPDC with

respect to Scenario 1Interstate NHS (NIS) NNHS

Scenario 1: All relevant costs considered 0.0072 0.0652 0.2559 —

Scenario 2: Non-consideration of reconstruction cost 0.0015 0.0135 0.0528 79%

Scenario 3: Non-consideration of reconstruction and routine

maintenance cost

0.0012 0.0109 0.0429 83%

Scenario 4: Rehabilitation cost at fixed intervals 0.0010 0.0087 0.0343 86%

Figure 5.12 Scenario 3—Non-consideration of reconstruction and routine maintenance costs in MPDC estimation.

Figure 5.13 Scenario 4—MPDC estimation for rehabilitation at fixed intervals only.
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period) and subsequent treatments. Using the devel-
oped MR&R strategies, models were developed for
MPDC estimation. All other steps for MPDC estima-
tion remain the same as discussed in the previous
section. The estimated model and MPDC estimates are
summarized in Tables 5.23 and 5.24.

The MPDC estimates (Table 5.24) suggest that the
studies that did not consider reconstruction cost
obtained results that underestimate the true MPDC
by 79%. Since reconstruction cost is a strength-driven
expenditure, it can be argued that it must be a part of
MPDC estimates. In the third scenario, both recon-
struction cost and routine maintenance cost were not
considered, and the MPDC was estimated for periodic
maintenance and rehabilitation only. By just consider-
ing rehabilitation and periodic maintenance only, the
results suggest that the MPDC was almost 83% lower
compared to Scenario 1. Also, the results of Scenario 3
suggest that routine maintenance cost contributes to the
MPDC and should therefore form a part of MPDC
estimation.

The last scenario (Scenario 4) where only rehabilita-
tion cost was considered for MPDC estimation revealed
that the MPDC was almost 86% lower compared to
Scenario 1. In reality, highway agencies do not use this
strategy but rather use a mix of rehabilitation, periodic
and routine maintenance, and reconstruction at differ-
ent times to ensure that their highways have a
satisfactory level of service. Thus, it could be argued
that the past studies that assumed a strategy where
rehabilitation treatments were applied at regular inter-
val for MPDC estimation, used an unrealistic
approach. The estimated results are not only lower
than MPDC estimates based on all costs but also are
derived from maintenance strategies that are not
realistic from a pavement maintenance management
standpoint.

Thus, it can be argued that the most realistic
approach which can lead to accurate estimation of
MPDC is that which incorporates explicitly practical
highway agency MR&R schedules and therefore
considers all pavement repair costs for MPDC
estimation.

5.13 Impact of Non-Consideration of Non-Truck Traffic
on MPDC Estimates

For the MPDC estimation in the present study, only
truck traffic was considered because past research

suggested that the non-truck contribution to pavement
damage is insignificant (50). INDOT uses the FHWA
vehicle classification system for classifying all vehicles
into 13 different classes depending upon their axle
spacing and number of axles. INDOT further classifies
vehicles from Class 4 through Class 13 as commercial
vehicles, while vehicles from Class 1 through Class 3
(motorcycles, cars, pickup trucks, and light van
traffic) as non-commercial vehicles (110). For simpli-
city, the present study refers to commercial vehicles as
truck traffic and non-commercial vehicles as non-truck
traffic.

To test the validity of the assumption that the non-
truck traffic contribution is insignificant in MPDC
estimation and thus may be excluded from analysis, a
simple methodology was adopted as follows:

N Estimation of Non-Truck Traffic Volume: The volume of
non-truck traffic was obtained from INDOT sources
(110). The most recent year (2007) traffic volume
estimates were updated to the analysis year (2010) using
appropriate growth factors. The percentages of truck and
non-truck traffic for different vehicle classes are shown in
Table 5.25.

N Estimation of ESALs Contribution by Non-Truck Traffic:
The total ESALs contributed by non-truck traffic were
estimated using non-truck traffic volume and the fourth
power law. Non-truck traffic is excluded in WIM station
standard reports, thus no real weight estimates were
available for these vehicles. Different studies provide
different weights for small and medium-size cars, small
and large SUVs and light duty trucks. On Indiana
highways, approximately 60% of the non-truck traffic
falls into FHWA Class 2 (cars) and 40% falls into
FHWA Class 3 (SUV, light duty trucks) (Table 5.26).
Using the national average weight of FHWA Classes 2
and 3, we assumed that FHWA Class 2 weighs 3,500 lbs
and FHWA Class 3 weighs 4,700 lbs (147). Since all of
these vehicles have two single axles, we further assumed
that each axle carries half of the vehicle weight. Thus,
each car and light duty truck axle weighs approximately
1,750 lbs and 2,350 lbs, respectively. Using the non-truck
traffic volume data and fourth power law, the total
ESALs contributed by non-truck traffic were estimated.
Then, by comparing the results with the ESALs
contributed by the truck traffic (Section 5.8.2) the
percentage of ESAL contribution for non-truck traffic
was estimated (Table 5.27). Note that for Table 5.27, the
truck traffic categories are defined in Table 5.8.

From Table 5.27, it can be easily concluded that the
non-truck traffic contribution to pavement damage is
insignificant. Clearly, the total ESALs contributed by

TABLE 5.25
Traffic Composition on Indiana Highways

Highway Functional Class

Vehicle in Individual Classes (FHWA Vehicle Classification System)

1 2 3 4 5 6 7 8 9 10 11 12 13

Interstate 0.52 46.08 29.05 0.36 4.17 0.60 0.08 0.71 17.29 0.13 0.74 0.26 0.02

NHS (NIS) 0.49 54.43 29.63 0.33 3.71 0.50 0.24 0.92 9.16 0.23 0.19 0.09 0.08

NNHS 0.28 55.49 34.45 0.27 4.17 0.35 0.09 0.71 4.03 0.08 0.04 0.02 0.01

Average 0.43 52.00 31.04 0.32 4.02 0.48 0.14 0.78 10.16 0.15 0.32 0.12 0.04
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non-truck traffic are negligible compared to truck
traffic. Thus, the assumption that non-truck traffic
can be excluded from MPDC estimation, can be
considered valid.

5.14 Comparison of Pavement Damage Cost with
Existing Permit Fee

5.14.1 Current Permit Fee

At the present time, INDOT charges a permit fee to
overweight trucks. For charging vehicles on Indiana’s
highways, it must be established first that vehicles are
over the weight and dimensions limits established by
the law. To travel legally, the followings are the
dimensions and weight limits:

a. Dimension Limits

- 13 feet 6 inches in height

- 8 feet 6 inches in width

- 40 feet in length for a single vehicle

- 60 feet in length for a two-vehicle combination. If two-
vehicle combination is connected by a fifth wheel hook-
up, there is no overall length limit, but the trailer and
load length cannot exceed 53 feet

b. Weight Limits

- 80,000 pounds gross vehicle weight

- 12,000 pounds on the steering axle

- 20,000 pounds on a single axle

- 34,000 pounds on a tandem axle

Since present study is focused on determining the
actual damage being inflicted by overweight vehicles
only, oversize limits are outside the scope of this study.
Only charges based on overweight limits are computed
and compared with existing road-use charges (permit
fee). For charging most overweight trucks, INDOT has
established three broad categories. The weight limits
and permit fee charged for each overweight truck
category are summarized as follows:

a. Overweight Truck Category 1: GVW 80,000–108,000 lbs

5 $0.35 per mile

b. Overweight Truck Category 2: GVW 108,000–150,000 lbs
5 $0.60 per mile

c. Overweight Truck Category 3: GVW .150000 lbs 5 $1.0

per mile

In addition to these fees, $10 executive fee is charged
to vehicles weighing over 120,000 lbs. Also, vehicles
over 200,000 lbs pay $25 design and review fee in
addition to $10 executive fee (122).

5.14.2 Comparison of Pavement Damage Cost with
Existing Permit Fee

For comparison of pavement damage cost (actual
damage which is being incurred) by different over-
weight truck classes to Indiana’s highways, the follow-
ing procedure was adopted:

N Step 1: Estimation of Unit Pavement Damage Cost. The

details have been covered in Section 5.9 of this report.

Further, it was assumed that 85% pavement damage is

TABLE 5.26
Actual Cost of Pavement Damage vs. Permit Fee, by Vehicle Class, for 85% Load Share of Damage

Details Avg. GVW (lbs) Avg. ESAL Avg. Additional ESAL

85% Load-Related Damage

IS NHS-NIS Non-NHS

Cost ($/ESAL-mile) 0.006 0.055 0.218

GVW Range: 80001–108000 (Current Permit Fee 5 $0.35/mile)

4 Axles 91,501 7.51 5.13 0.031 0.282 1.118

5 Axles 92,838 4.79 2.42 0.015 0.133 0.527

6 Axles 99,154 3.02 0.64 0.004 0.035 0.14

7+ Axles 100,474 1.68 20.69 — — —

GVW Range: 108001–150000 (Current Permit Fee 5 $0.60/mile)

4 Axles 120,000 16.04 13.66 0.082 0.751 2.978

5 Axles 116,455 9.63 7.25 0.044 0.399 1.581

6 Axles 119,686 6.56 4.18 0.025 0.23 0.912

7 Axles 125,896 4.64 2.26 0.014 0.124 0.492

8 Axles 131, 228 4.75 2.37 0.014 0.13 0.516

9+ Axles 126,153 2.95 0.57 0.003 0.032 0.125

GVW Range: More Than 150000 (Current Permit Fee 5 $1.0/mile)

7 Axles 152,567 11.26 8.83 0.053 0.489 1.937

8 Axles 161,191 11.09 8.71 0.052 0.479 1.898

9 Axles 168,800 9.59 7.21 0.043 0.393 1.572

10 Axles 171,057 10.16 7.78 0.047 0.428 1.697

11 Axles 183,300 11.87 9.49 0.057 0.522 2.069

12+ Axles 201,700 10.5 8.12 0.049 0.447 1.77
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load related and 15% is caused by climate. Therefore, on

Interstate, NHS (NIS) and non-NHS, overweight trucks

cause 0.0060,0.055 and 0.218 $/ESAL-mile, respectively

N Step 2: Estimation of GVW and average Truck ESALs

for overweight truck classes. Overweight truck data was

obtained from INDOR for month of September 2010.

Trucks were broadly classified into three overweight
groups as per INDOR current practice for permit fee. In

each group, trucks were further classified on the basis of

number of axles. For different axle configuration and

GVW, the total ESAL generated by each truck class were

determined. The detailed classification of these trucks is

presented in Table 5.26.

N Step 3: Estimation of Average ESALs for 80,000 lbs, 5-

axle Truck: Since all trucks with load 80,000 lbs or less

use highway without permit, it was concluded that

overweight trucks should be charged for highway use if

they exceed 80,000 lbs. For example, if a truck weighs

100,000 lbs, it should be charged a permit fee for excess

20,000 lbs and not for its GVW. For subtracting the

80,000 lbs damage from the GVW of a truck, the number
of ESALs generated by a standard 5-axle semi-trailer

carrying 80,000 were estimated using AASHTO fourth

power law. Assuming that this truck carries 12,000 lbs on

steering axle and 34,000 lbs on each tandem axle, a total

of 2.37 ESALs were estimated for this truck type.

N Step 4: Estimation of additional pavement damage due

to load carried over the limit of 80,000 lbs: Knowing the
total ESAL generated by an overweight truck, the

additional damage was estimated by subtracting the

ESALs generated by an 80,000 lbs, 5-axle truck, from the

total ESALs of an overweight truck as follows:

Additional pavement damage 5 Total ESALs of OW

Truck – 2.37 (ESALs of a 80,000 lbs, 5-axle Truck).

N Estimation of $ Value of Additional Pavement Damage by
an Overweight Truck: Having estimated the total

additional damage caused by an overweight truck, its

damage cost was estimated by multiplying the additional

ESALS of an overweight truck with the cost per ESAL-

mile as follows: Additional Damage ($) 5 Additional

ESALs 6 $/ESAL-mile.

The current permit fee and actual cost of pavement
damage for each truck class are presented in Table 5.26.
In the case of the first overweight truck category

(80,000–108,000 lbs GVW) for all trucks (4, 5, 6 and 7+
axles), the existing permit fee exceeds the actual
pavement damage incurred on Interstate and NHS-
NIS (Figure 5.14). In the case of NNHS, 4-axle and 5-
axle trucks are underpaying (existing permit fee is less
than the actual pavement damage incurred).

In the case of the second overweight truck category
(108,000–150,000 lbs GVW), all trucks (4, 5, 6, 7, 8, 9+
axles) are overpaying on Interstate (Table 5.26). In the
case of NHS-NIS, with the exception of 4-axle trucks,
all trucks are paying a higher permit fee than the actual
pavement damage they inflict. In the case of NNHS,
trucks with 4, 5, and 6 axles are underpaying while
other truck categories are overpaying. Thus for 4, 5,
and 6-axle trucks, the existing permit fee is less than the
actual pavement damage these trucking are inflicting on
non-NHS roads (Figure 5.15).

In the case of the third overweight truck category
(GVW greater than 150,000 lbs), all trucks (7, 8, 9, 10,
11, 12+ axles) are overpaying for both Interstate and
NHS-NIS (Table 5.26). In case on NNHS, all trucks
are underpaying. A comparison of the estimated
pavement damage cost with the existing fee for each
truck category suggests that all of the truck classes are
paying more permit fee compared to pavement damage
they inflict (Figure 5.16). The damage here does not
include bridge damage or other costs associated with
overweight truck operations and their enforcement.

5.15 Chapter Summary

This chapter presented the application of the frame-
work developed in this study for MPDC estimation. The
chapter started with a brief description of pavement
families and maintenance and rehabilitation treatments
considered for the MPDC estimation. This was followed
by a discussion on the treatment cost and traffic data,
the selection of a road-use measure, the estimation of a
pavement rest period, and the effectiveness of rehabili-
tation and maintenance treatments used for MPDC
estimation. Sixty pavement MR&R strategies for

TABLE 5.27
Percent ESAL Contribution by Non-Truck Traffic

Functional Class

Truck Traffic

Categories

Non-Truck

AADT

Truck

AADT

Non-Truck

ESALs

Truck

ESALs

% Contribution of

Non-Truck ESALs

Interstate Very high 49,453 16,768 6130 4,217,603 0.15

High 33,748 8,694 4184 2,186,775 0.19

Medium 22,991 6,964 2850 1,751,633 0.16

Low 15,110 3,322 1873 835,572 0.22

NHS (NIS) Very high 13,358 5,072 1656 1,057,401 0.16

High 16,722 3,378 2073 704,239 0.29

Medium 13,772 2,360 1707 492,008 0.35

Low 8,317 858 1031 178,874 0.57

NNHS Very high 8,143 1,566 1009 265,367 0.38

High 4,973 692 617 117,263 0.52

Medium 3,325 356 412 60,326 0.68

Low 1,551 120 192 20,335 0.94
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flexible pavements and thirty-two for rigid pavements
were presented and models were estimated for MPDC
estimation. The developed models revealed that annual
ESALs and pavement type were the two factors having a
significant impact on MR&R cost. The model results
revealed that the MPDC is greater for non-national
highways and lower for Interstate highways, indicating
that highway users experience economies of scale at
roads with high traffic volumes.

The impacts of non-consideration of reconstruction
cost, reconstruction and routine maintenance cost, and

reconstruction and routine and periodic maintenance
cost were analyzed. The evaluation of the MPDC results
estimated by considering different cost components
revealed that failure to account for any category of
pavement damage-related cost can have a significant
impact on MPDC estimation. It was concluded that
MPDC results will likely be unsatisfactory unless (i) all
categories of pavement repair, namely, reconstruction,
rehabilitation, and routine and periodic maintenance
cost are considered, and (ii) the analysis duly reflects the
actual and practical decision-making processes of the

Figure 5.15 Total pavement damage cost for trucks with GVW 108,000–150,000 lbs.

Figure 5.14 Total pavement damage cost for trucks with GVW 80,000–108,000 lbs.
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highway agency. Also, it was concluded that MPDC
results are not significantly compromised when non-
truck traffic is excluded from the analysis. Finally, a
comparison of the existing permit fee paid by different
truck classes and actual pavement damage incurred
revealed that trucks are paying less or more than the
actual pavement damage they cause to pavements at the
different highway functional classes.

6. SENSITIVITY ANALYSIS

Sensitivity analysis was carried out in this study to
investigate the changes in the overall MPDC estimation
results with the variation of the key input variables,
including pavement life-cycle length, interest rate, pave-
ment rest period, service life of rehabilitation treatments,
and the unit costs of reconstruction and rehabilitation.
The sensitivity analysis helped to validate the overall
framework developed for MPDC estimation in this study.

6.1 Effect of Pavement Life-Cycle Length on MPDC
Estimates

MPDC estimation in this study is based on a 50-year
pavement life cycle. MPDC can vary, depending on the
length of the pavement life cycles considered for
analysis. The most recent INDOT Pavement Design
Manual recommends a 50-year pavement life cycle (64).
In recent years, state departments of transportation
(DOTs) have been moving towards longer pavement life
cycles. The increase in the length of the pavement life
cycle can be attributed to the recent advances made in
pavement design and the adoption of enhanced
construction techniques and materials. Also, state
DOTs are striving to construct long-lasting pavements

in order to lower long-term maintenance cost and
reduce the frequency and duration of the maintenance
work zone. A recent survey by the South Carolina
Department of Transportation (SCDOT) revealed that
the states of Minnesota, Nebraska, New York, Virginia,
Washington, and Wisconsin and the Canadian Province
of Ontario are already using a 50-year pavement life-
cycle for LCCA purposes (124).

In order to study the impact of variations of the
pavement life-cycle length on MPDC, the developed
methodology involved the following steps:

N MR&R strategies were formulated using 50, 45, 40, and
35-year life-cycle lengths for both flexible and rigid
pavements. The four life-cycle lengths were considered as
they are the most commonly used by highway agencies in
the U.S. (124). The MR&R strategy formulation steps
are discussed in Section 5.7.

N From the formulated strategies, traffic and cost data (the
average annual ESALs and the EUAC for each MR&R
strategy) were estimated for the four different cases of
pavement life-cycle lengths. The data estimation steps are
explained in Section 5.8.

N From the estimated data, separate models were devel-
oped for the pavement life-cycle lengths of 50, 45, 40, and
35 years using an infinite analysis period. The developed
models are presented in Table 6.1.

N From the developed models, the MPDC was estimated
for each of the three highway functional classes. The
estimates for MPDC are presented in Table 6.2. The
model and MPDC estimation steps are in line with the
methodology explained in Section 5.9.

The MPDC estimates suggest that the pavement life-
cycle length has a significant impact on the estimated
cost (Figures 6.1 to 6.3). For all three functional
classes, the MPDC estimates are the minimum for a

Figure 5.16 Total pavement damage cost for trucks with GVW exceeding 150,000 lbs.
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50-year pavement life-cycle length and the maximum
for a 35-year pavement life-cycle length. Thus, with the
increasing length of the pavement life cycle, the MPDC
estimates decreases. This is intuitive in that, for the
longer pavement life-cycle length, the discounted
maintenance costs occurring farther from the base year
are small, thus resulting in a low EUAC (MR&R). A
low EUAC (MR&R) results in a lower MPDC. Thus,
adequate attention should be paid by highway agencies
in selection of their appropriate pavement life-cycle
length for MPDC estimation. MPDC estimates using
different life-cycle lengths revealed that long-lasting
pavements can result in agency cost savings. Long-
lasting pavements result not only in lower maintenance,
accidents, and environmental costs, but also lower

MPDC. In this study, a 50-year pavement life cycle was
used for MPDC estimation based upon highway agency
trends and recommendations, as well as on the basis of
pavement design and construction improvements. The
selected length of pavement life cycle therefore should
represent the current agency practices in pavement
construction and maintenance.

6.2 Effect of Discount Rate on MPDC Estimates

The discount rate can be an important factor in
MPDC estimation. MPDC estimates depend upon the
EUAC (MR&R) of individual MR&R strategies.
Different discount rates will result in different EUAC
(MR&R) for individual MR&R strategies, which

TABLE 6.1
Model Estimates—MPDC Estimation Using Different Pavement Life-Cycle Lengths

Life-Cycle Length (Years) Coefficient Coefficient Value t-value P-value R2 N

50 Constant 255545 21.99 ,0.046 0.74 92

ln(ESALs) 11732 14.93 ,0.0001

PTYPE 26318 12.51 ,0.0001

45 Constant 256379 21.99 ,0.046 0.75 992

ln(ESALs) 12120 67.09 ,0.0001

PTYPE 26367 13.04 ,0.0001

40 Constant 259723 22.10 ,0.037 0.74 92

ln(ESALs) 12687 15.55 ,0.0001

PTYPE 26385 13.23 ,0.0001

35 Constant 261020 23.156 ,0.0001 0.78 92

ln(ESALs) 13354 13.41 ,0.0001

PTYPE 26410 14.17 ,0.0001

TABLE 6.2
MPDC Estimates for Different Pavement Life-Cycle Lengths

Pavement Life Cycle (Years)

MPDC ($/ESAL-mile)—2010 Constant $

Interstate NHS (NIS) NNHS

50 years* 0.0072 0.0652 0.2559

45 years 0.0074 0.0674 0.2643

40 years 0.0077 0.0705 0.2767

35 years 0.0082 0.0742 0.2913

*50 years 5 base case.

Figure 6.1 Variation of MPDC with length of pavement life cycle—Interstate.
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ultimately will yield different MPDC estimates. In this
study, MPDC was estimated using a 4% real discount
rate. Using a higher discount rate would result in a
lower EUAC (MR&R) and thus lower MPDC, and
vice versa. In order to study the impact of discount rate
on MPDC estimation, the developed methodology
involved the following steps:

N Using a 50-year life-cycle length, MR&R strategies were

formulated over an infinite analysis period for new

flexible and rigid pavements. The discount rate was made

to vary from 0 to 10%. For each of the 11 different cases

of discount rate, 92 different MR&R strategies were

formulated. The MR&R strategy formulation steps are

consistent with Section 5.7.

N From the formulated strategies, costs and traffic data

were estimated for 11 different cases of discount rate. For

doing this, the steps are in line with the methodology

previously explained in Section 5.8.

N From the data estimates, separate models were developed

for 11 different cases of discount rate (Table 6.3).

N MPDC was estimated from the developed models for

three functional classes. The estimates for MPDC are

presented in Table 6.4. The model and MPDC estima-

tion steps are in line with the methodology explained in

Section 5.9.

Figures 6.4 to 6.6 suggest that the discount rate can
have a significant influence on MPDC estimates.
MPDC decreases with increasing discount rates, and

vice versa. The discount rate used in this study, 4%, is
the real long-term rate that is recommended by FHWA
and used by INDOT. Using a different rate can
significantly influence the MPDC results. Therefore,
any deviations from this rate should be based on the
latest recommendations and practices in the industry. A
recent survey by Rangaraju et al. (124) indicated that
most state DOTs are using a 4% discount rate for their
analysis. Since the discount rate can have a significant
impact on MPDC estimates, it should be given due
consideration when comparing the results of any two
studies that used different discount rates in their
analysis.

6.3 Effect of Pavement Intervention Effectiveness on
MPDC Estimates

In the present study, the MR&R strategies were
formulated using the estimated rest periods and service
lives of rehabilitation and periodic maintenance treat-
ments for different highway functional classes. The rest
periods and service lives were estimated using Indiana
data (see Chapter 4 of the present report for details).
MR&R strategies with longer rest periods and more
effective rehabilitation and periodic maintenance treat-
ments are generally to have a lower EUAC (MR&R)
compared to MR&R strategies with shorter rest periods
and less effective rehabilitation and periodic mainte-

Figure 6.2 Variation of MPDC with length of pavement life cycle—NHS (NIS).

Figure 6.3 Variation of MPDC with length of pavement life cycle—NNHS.
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nance treatments. The impact of changes in the rest
period of newly reconstructed pavement and the service
lives of rehabilitation and periodic maintenance treat-
ments on MPDC estimates is discussed in the ensuing
paragraphs.

6.3.1 Length of the Rest Period

For establishing the rest period, performance trend
models were developed in this study. From the
developed performance models, rest periods were
established as the time interval between pavement
construction to the first periodic maintenance (see
Section 5.6 of this report for further detail). In order to
study the impact of changes in estimates of rest period
on MPDC estimation, the developed methodology
involved the following steps:

N Using the 50-year pavement life-cycle length, MR&R
strategies were formulated over an infinite analysis
period for a new flexible pavement for five different
cases (i.e., lengths of rest period). The methodology for
strategy formulation with different rest periods is
explained in Figures 6.7 and 6.8. Figure 6.7 represents
the base case where the first periodic maintenance
treatment (thin HMA overlay) was applied to a newly
reconstructed pavement in year 20. Thus, in this case, the
rest period was 20 years. Figure 6.8 represents the case
where the same pavement had a two-year smaller rest
period compared to the base case (thin HMA overlay
was applied to a newly-reconstructed pavement in year

TABLE 6.3
Model Estimates—PDC Estimation Using Different Interest Rates

Interest Rate Coefficient Coefficient Value t-value P-value R2 N

0% Constant 281456 25.38 ,0.0001 0.82 0.92

ln(ESALs) 14715 12.91 ,0.0001

PTYPE 40107 11.51 ,0.0001

1% Constant 271035 24.87 ,0.0001 0.81 92

ln(ESALs) 13639 12.43 ,0.0001

PTYPE 34524 10.29 ,0.0001

2% Constant 263141 24.42 ,0.0001 0.79 92

ln(ESALs) 12826 11.94 ,0.0001

PTYPE 30214 9.20 ,0.0001

3% Constant 257072 24.05 ,0.0001 0.77 92

ln(ESALs) 12203 11.51 ,0.0001

PTYPE 26856 8.28 ,0.0001

4%* Constant 252341 23.74 ,0.0001 0.75 92

ln(ESALs) 11720 11.13 ,0.0001

PTYPE 24217 7.52 ,0.0001

5% Constant 248607 23.49 ,0.0001 0.72 92

ln(ESALs) 11340 10.82 ,0.0001

PTYPE 22123 6.90 ,0.0001

6% Constant 245625 23.28 ,0.0001 0.70 92

ln(ESALs) 11039 10.56 ,0.0001

PTYPE 20447 6.39 ,0.0001

7% Constant 243219 23.18 ,0.0001 0.93 92

ln(ESALs) 10797 10.35 ,0.0001

PTYPE 19093 5.98 ,0.0001

8% Constant 241260 22.97 ,0.0001 0.67 92

ln(ESALs) 10602 10.17 ,0.0001

PTYPE 17989 5.64 ,0.0001

9% Constant 239653 22.86 ,0.0001 0.65 92

ln(ESALs) 10442 10.02 ,0.0001

PTYPE 17080 5.36 ,0.0001

10% Constant 237412 22.71 ,0.0001 0.65 92

ln(ESALs) 10282 9.77 ,0.0001

PTYPE 16690 5.01 ,0.0001

*4% 5 base case.

TABLE 6.4
MPDC Estimates for Different Discount Rates

Interest Rate

MPDC

Interstate NHS (NIS) NNHS

0% 0.0090 0.0818 0.3210

1% 0.0084 0.0758 0.2975

2% 0.0079 0.0713 0.2798

3% 0.0075 0.0678 0.2662

4%* 0.0072 0.0652 0.2557

5% 0.0070 0.0631 0.2474

6% 0.0068 0.0614 0.2408

7% 0.0066 0.0600 0.2355

8% 0.0065 0.0589 0.2313

9% 0.0064 0.0581 0.2278

10% 0.0063 0.0572 0.2243

*4% 5 base case.
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Figure 6.4 Variation of MPDC with discount interest rate—Interstate.

Figure 6.5 Variation of MPDC with discount interest rate–NHS (NIS).

Figure 6.6 Variation of MPDC with discount interest rate—NNHS.

Figure 6.7 Base case—Life-cycle M&R profile based on mean rest period.
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18). Such reduction in the length of the rest period
resulted in a shift of all maintenance activities by two
years towards year zero, thus resulting in a higher EUAC
(MR&R). The rest of the details (life-cycle length,
effectiveness of rehabilitation and periodic maintenance,
and interest rate) were identical for strategy formulation.
Similarly, strategies can be formulated where the rest
period exceeds the mean value. The five different cases
for which strategies were formulated are shown in
Table 6.5.

N From the formulated strategies, cost and traffic data
were developed for five different cases of pavement rest
periods. For doing this, the steps are in line with the
methodology explained in Section 6.8.

N From the data, separate models were developed for five
different cases of pavement rest periods (Table 6.6).

N MPDC was estimated from the developed models for
three functional classes. The estimates for MPDC are
presented in Table 6.7. The model and MPDC estima-

tion steps are in line with the methodology explained in
Section 6.9.

A comparison of the MPDC estimates (Table 6.7
and Figure 6.9) showed that, with changes in the
pavement rest period, the estimated MPDC also
changes. The higher the deviation from the estimated
rest period, the greater the difference in MPDC. Thus,
if the rest period deviates by one year from the mean
value, then there is an approximately 2% change in the
MPDC estimates. However, if the rest period deviates
by four years from the mean value, then there is an
approximately 12% change in the MPDC estimates.
Past studies have used expert opinion in estimating the
pavement rest period for different pavement classes,
therefore, the results might have had wide error
bounds. In the present study, the rest periods were
estimated using pavement performance models devel-
oped using real field data, thereby ensuring more
reliable MPDC estimates.

For the case study, it was assumed that the rest
periods are one, two, three, and four years less than the
mean values, and the changes in the MPDC estimates
for the reduced rest periods were determined and
compared. In these scenarios, all the maintenance and
rehabilitation costs occurring during the pavement life
cycle were moved two years earlier, thus resulting in
higher EUAC (MR&R) and higher MPDC. In alter-

Figure 6.9 Percent variation of MPDC with variation in rest period.

Figure 6.8 Life-cycle M&R profile with two years deviation of rest period from base case.

TABLE 6.5
Length of the Rest Period—Scenarios for MPDC Estimation

Scenario Rest Period Used for Strategy Formulation

Base case MR&R strategies based on study estimated rest period

Case -1 Rest period 1 year less than mean value

Case -2 Rest period 2 years less than mean value

Case -3 Rest period 3 years less than mean value

Case -4 Rest period 4 years less than mean value
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nate scenarios, if rest periods were increased by one,
two, three, and four years for each MR&R strategy and
MPDC was estimated, then the deviation from the base
case was expected to be lower. Increased rest periods
will defer all maintenance and rehabilitation costs (by
the number of years the rest period is increased), thus
resulting in lower EUAC (MR&R) and MPDC
estimates. Thus, even if the rest period was either four
years less or more from the mean value, the deviation of
MPDC estimates from base-case would remain at
12.75% or lower.

6.3.2 Effectiveness of Rehabilitation Treatments

In this study, the treatment service life was used as a
measure of the effectiveness of a rehabilitation treat-
ment for MR&R strategy formulation. The service lives
of different rehabilitation treatments were summarized
earlier in Table 4.12. In order to study the impact of
inaccuracy in the rehabilitation treatment effectiveness
(service life) estimates on MPDC estimation, the
developed methodology involved the following steps:

N Using a 50-year pavement life-cycle length, MR&R

strategies were formulated over an infinite analysis

period for new flexible pavements for five different cases

of rehabilitation treatment effectiveness.

N The methodology for strategy formulation with different

rehabilitation treatment effectiveness is explained with the

help of Figures 6.10 and 6.11. Figure 6.10 represents the

base case where the service life of a rehabilitation treatment

is 15 years. Figure 6.11 represents an alternative case where

the same pavement has a two-year less rehabilitation

treatment service life. This reduced service life will shift

backward by two years only those maintenance activities

which are performed after this rehabilitation treatment.

This backward shifting of maintenance activities will result
in a higher EUAC (MR&R).

N The remaining details (life-cycle length, length of rest
period, effectiveness of periodic maintenance, and inter-
est rate) were kept similar for strategy formulation. The
five different cases for which strategies were formulated
are shown in Table 6.8.

N From the formulated strategies, the cost and traffic data
were estimated for five different cases of pavement
rehabilitation treatment effectiveness. For doing this, the
steps are in line with the methodology explained in
Section 5.8.

N From the data estimates, separate models were developed
for five different cases of rehabilitation treatment
effectiveness (Table 6.9).

N MPDC was estimated from the developed models for
three functional classes. The estimates for MPDC are
presented in Table 6.10. The model estimation and
MPDC estimation steps are in line with the methodology
explained in Section 5.9.

The MPDC estimates suggest that, with a change in
rehabilitation treatment effectiveness, MPDC changes
significantly (Table 6.10 and Figure 6.12). The larger
the deviation from the mean estimated values, the
greater the difference in MPDC from the base case.
Figure 6.12 indicates that with one, two, three, and four
years deviations of the rehabilitation treatment service
life from the base case results in approximately 1%,
1.8%, 2.6%, and 3.9% changes in the MPDC estimates,
respectively. The analysis results suggest that the
consequences of treatment life misspecification are
relatively little compared to inaccuracies in rest period
estimation. Most of the past PDC estimation studies
have used expert opinion in estimating the rehabilitation
treatment effectiveness; this may have led to incorrect
PDC estimates. For accurate estimation of MPDC,

TABLE 6.7
Rehabilitation Treatment Effectiveness—Scenarios for MPDC Estimation

Scenario Service Life of Rehabilitation Treatment

Base case MR&R strategies based on mean service life (used in this study)

Case 1 Service life 1 year less than mean value

Case 2 Service life 2 years less than mean value

Case 3 Service life 3 years less than mean value

Case 4 Service life 4 years less than mean value

TABLE 6.6
MPDC Estimation Using Different Rest Periods

Rest Period

MPDC ($/ESAL-mile)

% Difference From Base CaseInterstate NHS (NIS) NNHS

Base case rest period 0.0066 0.0599 0.2350 —

1-year deviation from base case 0.0068 0.0613 0.2405 2.38%

2-year deviation from base case 0.0071 0.0644 0.2528 5.11%

3-year deviation from base case 0.0077 0.0697 0.2734 8.15%

4-year deviation from base case 0.0087 0.0786 0.3083 12.75%
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Figure 6.10 Life-cycle M&R profile based on mean treatment effectiveness.

TABLE 6.8
MPDC Estimates for Different Service Lives of Rehabilitation Treatment

Service Life of Rehabilitation Treatment

MPDC

% Difference from Base CaseInterstate NHS (NIS) NNHS

Base case SL 0.0066 0.0599 0.2350 —

1-year deviation from base case 0.0067 0.0605 0.2375 1.08%

2-year deviation from base case 0.0068 0.0616 0.2418 1.80%

3-year deviation from base case 0.0070 0.0632 0.2480 2.59%

4-year deviation from base case 0.0073 0.0657 0.2577 3.91%

TABLE 6.9
MPDC Estimates for Different Reconstruction Costs

Reconstruction Cost Scenario

MPDC ($/ESAL-mile)

% Difference from Mean Reconstruction CostInterstate NHS (NIS) NNHS

Base case 0.0066 0.0599 0.2350 —

+2% 0.0066 0.0595 0.2333 +0.72

+4% 0.0065 0.0591 0.2317 +1.41

+6% 0.0065 0.0586 0.2301 +2.10

+8% 0.0064 0.0582 0.2285 +2.80

+10% 0.0064 0.0578 0.2268 +3.49

+12% 0.0063 0.0574 0.2251 +4.21

+14% 0.0063 0.0570 0.2235 +4.90

+16% 0.0062 0.0566 0.2219 +5.59

+18% 0.0062 0.0561 0.2203 +6.28

+20% 0.0062 0.0557 0.2186 +6.98

22% 0.0067 0.0603 0.2367 20.69

24% 0.0067 0.0607 0.2383 21.38

26% 0.0068 0.0611 0.2399 22.07

28% 0.0068 0.0616 0.2415 22.77

210% 0.0068 0.0620 0.2432 23.46

212% 0.0069 0.0624 0.2449 24.18

214% 0.0069 0.0628 0.2465 24.87

216% 0.0070 0.0632 0.2481 25.56

218% 0.0070 0.0637 0.2497 26.25

220% 0.0071 0.0641 0.2514 26.98
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Figure 6.12 Percent variation of MPDC with variation in rehabilitation treatment effectiveness.

Figure 6.11 Life-cycle M&R profile with two-year deviation of service life from base case.

TABLE 6.10
MPDC Estimation Using Different Rehabilitation Costs

Rehabilitation Cost Scenario

MPDC ($/ESAL-mile)

% Difference from Mean Rehabilitation CostInterstate NHS (NIS) NNHS

Base case 0.0066 0.0599 0.2350 —

+2% 0.0066 0.0594 0.2330 +0.84

+4% 0.0065 0.0589 0.2311 +1.68

+6% 0.0065 0.0584 0.2291 +2.53

+8% 0.0064 0.0579 0.2271 +3.37

+10% 0.0063 0.0574 0.2251 +4.24

+12% 0.0063 0.0569 0.2232 +5.11

+14% 0.0062 0.0564 0.2212 +5.89

+16% 0.0062 0.0559 0.2192 +6.79

+18% 0.0061 0.0554 0.2172 +7.64

+20% 0.0061 0.0549 0.2153 +8.45

22% 0.0067 0.0604 0.2369 20.84

24% 0.0067 0.0609 0.2389 21.65

26% 0.0068 0.0614 0.2409 22.50

28% 0.0068 0.0619 0.2429 23.34

210% 0.0069 0.0624 0.2449 24.18

212% 0.0070 0.0629 0.2470 25.02

214% 0.0070 0.0634 0.2488 25.86

216% 0.0071 0.0640 0.2509 26.70

218% 0.0071 0.0645 0.2529 27.55

220% 0.0072 0.0649 0.2548 28.39
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rehabilitation treatment effectiveness should be esti-
mated using the best available data and the use of expert
opinion should be resorted to only where there is no
other option.

From the discussion in previous paragraphs, it was
assumed that the service lives were one, two, three, and
four years less than the mean values, and changes in the
MPDC estimates resulting from such reduced effective-
ness were determined and compared. In these scenarios,
all the maintenance and rehabilitation costs occurring
after the first rehabilitation treatment during the pave-
ment life cycle were moved one, two, three, and four years
earlier, and resulted in a higher EUAC (MR&R) and a
higher MPDC. In another scenario, if the service lives
were increased by one, two, three, and four years for each
MR&R strategy and MPDC was estimated, then the
deviation from the base case was expected to be lower.
Increasing the rehabilitation treatment service life will
delay all maintenance activities (by the number of years
the rehabilitation treatment service life was increased),
thus resulting in lower EUAC (MR&R) and MPDC
estimates. Thus, if the service life is misinterpreted by
either four years less or more from the mean value, the
deviation of the resulting MPDC estimates from the base
case would remain 3.91% or lower.

6.4 Sensitivity of MPDC with Respect to Reconstruction
and Rehabilitation Cost

Reconstruction, rehabilitation, and periodic main-
tenance are the three major activities that are carried
out during the pavement life cycle. This study used the
unit cost ($/lane-mile) of reconstruction, rehabilitation,
and periodic maintenance treatment from the contract
data file of INDOT’s database. All costs were brought
to their equivalent 2010 constant dollar values using
FHWA’s CPI. Since the data were obtained from
projects undertaken during 2001–2006, an investigation
of the changes in MPDC with respect to changes in the
unit cost of reconstruction and rehabilitation from their
mean value (base case) was carried out. This is
discussed in the following section.

6.4.1 Sensitivity of MPDC with Respect to
Reconstruction Cost

Separate reconstruction costs for Interstate and non-
Interstate highway systems for both flexible and rigid
pavements were used for the MR&R strategy formula-
tion. The reconstruction costs used for MR&R strategy
formulation are provided in Section 5.4. In order to
study the impact of changes in MPDC with change in
reconstruction cost, using a 50-year life-cycle length,
MR&R strategies were formulated over an infinite
analysis period for new flexible pavements. MR&R
strategies were formulated for 21 different cases of
reconstruction cost. The reconstruction costs consid-
ered in this study were 0%, 2%, 4%, 6%, 8%, 10%,
12%, 14%, 16%, 18%, and 20% from the base case.
From the formulated strategies, the cost and traffic
data were estimated for 21 different cases of pavement
reconstruction cost. From the data estimates, separate
models were developed for the 21 cases. The MPDC
was estimated from the developed models for the three
functional classes (Table 6.9).

It was shown in Figure 6.13 that MPDC changes
with changes in the reconstruction cost, and the
changes in MPDC with respect to the reconstruction
cost is linear. Slight variations in the estimation of the
reconstruction cost, however, were not significant in
that an approximately 10% error in estimation of
reconstruction cost only led to about a 3.5% error in
the MPDC estimates.

6.4.2 Sensitivity of MPDC with Respect to
Rehabilitation Cost

The rehabilitation cost can have a major impact on
MPDC estimates as it is typically many times more
than the periodic maintenance cost and also rehabilita-
tion activities usually take place at least one to three
times as often in a pavement life cycle. Different
rehabilitation costs for Interstate, NHS (NIS) and
NNHS for flexible and rigid pavements were used for
the MR&R strategy formulation (shown in Section

Figure 6.13 Percentage variation of MPDC with reconstruction cost changes.
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5.4). In order to study the impact of changes in MPDC
with changes in the rehabilitation cost, using a 50-year
life-cycle length, MR&R strategies were formulated
over an infinite analysis period for new flexible
pavements. MR&R strategies were formulated for 21
different cases of rehabilitation cost. The rehabilitation
costs considered were 0%, 2%, 4%, 6%, 8%, 10%, 12%,
14%, 16%, 18% and 20% from the base case. From the
formulated strategies, the cost and traffic data were
estimated for 21 different cases of pavement rehabilita-
tion cost. From the data estimates, separate models
were developed for 21 different cases. MPDC was
estimated from the developed models for the three
functional classes (Table 6.10).

It was shown (Figure 6.14) that MPDC changes
linearly with changes in the rehabilitation cost. Similar
to the case of reconstruction cost, slight inaccuracies in
the estimation of rehabilitation cost are not that
alarming because it was observed that a 10% error in
the estimation of the rehabilitation cost only led to only
4% error in the MPDC estimates.

6.5 Chapter Summary

This chapter presented a detailed discussion of the
sensitivity of MPDC estimates with respect to the
pavement life-cycle length, discount rate, effectiveness
of rehabilitation treatments, rest period, and cost of
pavement reconstruction and rehabilitation. For the
sensitivity analysis, the developed MR&R strategies
were adjusted to incorporate different values of each
input factor, keeping other factors the same (pavement
life-cycle length, interest rate, rest period, rehabilitation
treatment effectiveness and reconstruction and rehabi-
litation treatment cost). Using the adjusted strategies,
OLS regression models were estimated to describe the
change in MPDC with respect to changes in the input
variables.

The results suggest that the pavement life-cycle
length has a significant impact on MPDC estimates.
MR&R strategies for pavement life-cycle lengths of 35,
40, and 45 years were formulated to estimate MPDC
for comparison with MPDC based on a 50-year life-
cycle. It was observed that, for longer pavement life-
cycles, MPDC estimates were lower, and vice versa. It is
important to select carefully the pavement life-cycle
length guided by the current highway agency MR&R
practices. It was also observed that the discount rate
can have a significant impact on the MPDC estimation
results. MPDC changes in a non-linear fashion with
changes in the discount rate (MPDC decreases with
increases in the discount rate, and vice versa). MPDC
estimates with the 4% real discount rate used in this
study was compared with discount rates ranging from
0% to 10%. Since changes in the discount rate can
significantly influence MPDC estimates, the selected
discount rate should be based on the latest recommen-
dations and practices in the highway industry.

The sensitivity of MPDC with respect to the rest
period and also to the effectiveness of rehabilitation
treatments was also evaluated. The results suggest that
incorrect estimation of the rest period and the effec-
tiveness of the rehabilitation treatment can change
MPDC estimates. It was observed that MPDC
estimates could vary by about 2–12% with a one- to
four-year incorrect estimation of the rest period.
However, in the case of rehabilitation treatments, a
one- to four-year incorrect estimation of rehabilitation
effectiveness can cause an approximately 1–4% change
in MPDC estimates. Lastly, the impact of the accuracy
of estimating the pavement reconstruction and rehabi-
litation treatment cost on MPDC estimates was
investigated. The results seem to indicate that incorrect
estimates of either the reconstruction or rehabilitation
cost can change the MPDC estimates but the results are
not critical in that a 10% error in the estimation of the

Figure 6.14 Percentage variation of MPDC with rehabilitation cost changes.
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reconstruction or rehabilitation cost led to only 4%
error (approximately) in MPDC estimates.

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Synopsis of the Research

This study addressed the vital issue of marginal
pavement damage cost estimation that highway agen-
cies worldwide continue to grapple with. An analytical
framework was developed for estimating the marginal
pavement damage cost on the basis of practical and
realistic strategies for highway maintenance. The study
began with an extensive review of the literature on the
subject, thus facilitating identification of the gaps in the
existing practice and research and the establishment of
pavement families on the basis of surface type,
functional class, and traffic loading. The framework,
which can be applied for pavements in different
families, incorporates pavement MR&R treatment
types, costs, timing, traffic volumes, and growth
projections from an entire state’s highway network,
pavement classification based on surface type, func-
tional classes and traffic loading distribution, and
age-based pavement MR&R strategies. Using the
developed framework, the marginal cost of pavement
damage was estimated for each pavement family and
age group. Also, the consequences of non-consideration
of reconstruction, routine maintenance, and/or periodic
maintenance cost were quantified in terms of under-
estimation of the pavement damage cost. Similarly, the
consequences of not considering non-truck traffic and
also of a possible mathematical misspecification of the
load-damage functional relationship, were investigated.
Furthermore, the variation of marginal pavement
damage cost with respect to key policy and analysis
variables (i.e., length of pavement life cycle, discount
rate, MR&R treatment effectiveness, and MR&R
treatment cost) was explored using sensitivity analysis.

7.2 Recapitulation of the Problem Statement and
Summary of the Findings

The literature review confirmed that very few studies
adopted a truly comprehensive approach for marginal
pavement damage cost estimation on the basis of
practical and realistic practices of maintenance, reha-
bilitation and reconstruction. Most past studies used
data from a few WIM stations that did not adequately
represent the loading patterns across the different
functional classes. Also, many studies considered only
a single type of overlay applied at fixed intervals,
thereby missing the practical reality that there are many
overlay types, depending on the overlay material types
and thickness, and that application intervals are not
(and should not be) constant. Also, it was shown that
the methodology adopted by a number of past studies
involved just a single highway segment and then
generalized for the entire network without accounting
for the significant heterogeneity that is encountered
across different segments, in practice. Thus, it is

necessary to use data on treatment cost and perfor-
mance and traffic volumes and trends from represen-
tative sample pavement sections in each established
family. Further, there should be a clear dichotomy
between strength- and capacity-driven expenditure so
that damage-based costs are not unfairly or unduly
inflated by the inclusion of capacity-based costs. Also,
an appropriate time span for the analysis must be
established so that long-term expenditures, traffic, and
performance trends can be established with minimum
bias. In addition, an appropriate road-use measure
should be selected that is consistent with the objective
of the analysis (which, in the context of this study, is
related to pavement damage). Another important
issue is that all of the categories, not just one or a
two, of the costs associated with pavement damage
repair, must be considered in order to reflect the true
and practical nature of agency repair decision making.

It is also important for pavement damage cost
estimation studies to duly recognize that the length of
the pavement rest period can be different from the
service lives of rehabilitation and periodic maintenance
treatments as well as for different pavement families
depending upon the traffic loading and climate.
Therefore, an appropriate approach is needed to
establish the rest periods and the effectiveness of the
maintenance and rehabilitation treatments prior to
MR&R strategy formulation.

On the basis of the identified gaps in the existing
practices of pavement damage cost estimation, this
study developed a framework with MR&R strategies
that incorporated not only reconstruction, rehabilita-
tion and maintenance costs, but also the treatment
selection and timing criteria, as a matter of practicality.
This study applied the developed framework to
estimate the cost of pavement damage for different
families and ages. The study results showed that
pavement damage cost is influenced significantly by
traffic loading levels and age. It was seen that the
marginal pavement damage cost increased with increas-
ing traffic and pavement age. Overall, the marginal
pavement damage cost estimates were found to range
from $0.006 per ESAL-mile on Interstate highways to
$0.218 per ESAL-mile on non-national highway
system.

The results showed that non-consideration of recon-
struction and maintenance cost can have serious
consequences on the estimated marginal pavement
damage cost. To show this, the marginal pavement
damage cost for four different cost scenarios were
estimated: (i) by considering all relevant pavement
damage repair costs (reconstruction, rehabilitation, and
periodic and routine maintenance); (ii) by considering
all relevant pavement damage repair costs except
reconstruction; (iii) by considering all relevant pave-
ment damage repair costs except reconstruction and
routine maintenance; and (iv) by considering rehabilita-
tion only, applied at fixed intervals of time. The results
showed that non-consideration of reconstruction or
reconstruction and routine maintenance cost can result
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in 79% and 83% underestimation of the actual marginal
pavement damage cost, respectively. The analysis also
showed that the unrealistic approach of considering
only rehabilitation treatments applied at fixed intervals
can lead to as much as 86% underestimation of the
actual marginal pavement damage cost. The results also
suggested that non-consideration of non-truck traffic
has insignificant impact on marginal pavement damage
cost estimates; therefore, it is concluded that it is
appropriate to exclude automobiles from pavement
damage cost analysis.

This study conducted a sensitivity analysis of the
pavement damage cost with respect to the pavement
life-cycle length, discount rate, rest period, effectiveness
of rehabilitation treatments and the cost of pavement
reconstruction and rehabilitation treatment. The results
suggested that the marginal pavement damage cost
estimates are highly sensitive to the pavement life-cycle
length. All else being equal, the marginal pavement
damage cost was found to be low for longer pavement
life cycles and vice versa. It was concluded that it is very
important to select an appropriate pavement life-cycle
length that reflects the particular highway agency’s
MR&R practices. Similarly, it was determined that the
marginal pavement damage cost estimates are very
sensitive to the discount rate used for analysis. As such,
the appropriate discount rate should be selected on the
basis of the current policies of the highway agency. The
study also evaluated the sensitivity of marginal pave-
ment damage cost with respect to the length of the rest
period of a reconstructed pavement and also to the
effectiveness (treatment service life) of the rehabilitation
treatments. It was shown that incorrect estimation of
either the rest period or the rehabilitation treatment
service life can significantly alter the estimated marginal
pavement damage cost; and the consequences are more
severe in the case of the rest period compared to the
rehabilitation treatment service life. An assessment of
the impact of inaccuracy in the pavement reconstruc-
tion and rehabilitation treatment costs revealed that
such inaccuracies can cause some variations in the
marginal pavement damage cost estimates, albeit to a
relatively minor degree compared to the other factors.

7.3 Contribution of this Research

This study is of interest to highway agencies that face
maintenance funding shortages and, thus are seeking
options to raise revenue such as establishing or updating
highway user charges on the basis of the damage
incurred to highway infrastructure. This research effort
was aimed at developing a comprehensive marginal
pavement damage cost estimation methodology that
could help transportation agencies in overcoming the
limitations in existing techniques. The major contribu-
tions of this research are summarized as follows.

As duly recognized in the literature, the first step in
any effort towards marginal pavement damage cost
estimation is to correctly identify the various repair cost
categories that are related to pavement damage. In most

of the past studies, a parochial range of cost categories,
namely, rehabilitation, or rehabilitation and periodic
maintenance, only were considered. However, it is a
truism that reconstruction, rehabilitation, and periodic
and routine maintenance are expenditures that are
incurred due to pavement loading and, consequently,
pavement damage, and thus are strength-driven expen-
ditures. Most past studies on pavement damage cost
estimation failed to explicitly define which cost cate-
gories should be included in pavement damage cost
estimates and therefore did not include all of the
pavement damage repair categories that are associated
with strength-driven expenditures for pavement damage.
This report documents a study effort that is probably the
first pavement damage cost estimation study that
explicitly defines strength-driven and capacity-driven
expenditures and explicitly considers all of the expendi-
tures in the former category (reconstruction, rehabilita-
tion, and maintenance) for the analysis.

Unlike most past studies where the marginal pave-
ment damage cost was estimated without considering
the realistic and practical highway agency MR&R
strategies, this study incorporated actual and practical
highway agency decision making processes and guide-
lines with regard to treatment types and timings into
marginal pavement damage cost estimation. Most past
studies did not adequately consider such practical
realities and instead adopted untenable strategies that
involved a single type of rehabilitation treatment
applied at fixed intervals or rehabilitation and periodic
maintenance treatments only, without considering
actual treatment service lives.

To reflect the state of practice as well as engineering
practicality, this study duly carried out the analysis for
different pavement families, that is, for the different
surface types (rigid and flexible), the highway func-
tional classes (Interstate, national highway system non-
Interstate, and non-national highway system) and the
different levels of traffic volume. The detailed pavement
classification used in this study enabled capturing the
impact of pavement deterioration and the resulting
expenditures more reliably for various pavements that
are designed differently and deteriorate differently, and
necessarily receive different repair actions.

Unlike most of the past marginal pavement damage
cost estimation studies that either completely failed to
account for pavement age or did not explicitly consider
that attribute, this study carried out the analysis for five
different pavement age groups and demonstrated analy-
tically the impact of pavement age on marginal pavement
damage cost estimates. The results show that the cost of
pavement damage, and consequent user charges, are
generally higher for old pavements compared to new ones.

PART II. APPENDIX A. SUMMARY OF HCA
STUDIES AND RELATED CONCEPTS

1. 1982 Federal Highway Cost Allocation Study

The U.S. Department of Transportation conducted a
highway cost allocation study in 1982 to allocate federal
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highway program cost among the various vehicle
groups responsible for road wear. The purpose of
study was to assess the equity of federal user fee
structure and to recommend changes if necessary. In
the study, a new procedure was adopted for allocating
pavement rehabilitation and resurfacing costs.
Mathematical models were developed to relate the
degree to which different vehicle classes ‘‘consumed’’ the
pavement structure and contributed to the pavement
deterioration. This is also called consumption method.
The models helped to estimating the contribution of
vehicle axle loads to different pavement distresses that
necessitate the rehabilitation activities. Similarly,
changes were made to procedure for allocation of new
pavement cost. Unlike 1965 Federal HCA study which
used an incremental method for allocation of new
pavement cost, the 1982 study allocated new pavement
cost to different vehicle classes in using a reverse
incremental or uniform removal technique. The 1982
study did not account for the maintenance cost.

In the 1982 Federal HCA study, analysis was carried
out for eight highway classes. Urban and rural
Interstates, other arterials, collectors, and local roads
represented these highway classes. The analyses were
carried out for 38 vehicle classes but results were
reported for 15 vehicles classes only. The study
determined the share of total cost attributable to
various vehicle classes. Common costs, which were
allocated to different vehicle classes on basis of vehicle
miles travelled, constituted 46.7% of total cost. The
attributable cost which represented 53.3% of total cost
was assigned to different vehicle classes depending upon
their contribution to a particular cost. The study results
showed that autos and motorcycles, combination
vehicle and single-unit truck and buses were responsible
for 16.8%, 56.9% and 26.7% cost for the forecast
period.

2. 1984 Indiana HCA Study

In 1984, the Indiana Department of Transportation
sponsored a cost allocation study to determine the
cost responsibilities of different vehicle classes for
highway use. The study scope covered six highway
classes: urban and rural Interstate, primary and
secondary state routes, country roads, and city roads.
Costs were allocated for each of fourteen vehicle
classes. That study used the thickness incremental
method instead of traditional incremental method.
The latter involves traffic volume increment or
uniform removal technique (traffic volume decre-
ments) used in the 1982 Federal HCA study. The
pavement thickness increment procedure proposed in
that study eliminated the need for the iterative
procedure for calculating cost responsibilities of
different vehicles. Four and one-half inches for rigid
pavement and eight and one-half inches for flexible
pavements were established as the minimum base
thicknesses. The base facility cost was allocated to all
vehicles on the basis of facility use (vehicle-miles

travelled). In the thickness incremental method, the
total pavement thickness (in addition to minimum
thickness) is divided into different increments.
Pavement thickness increments are added to base
facility successively, and the cost responsibility factor
for each vehicle class is estimated using AASHTO
equations. When all the thickness increments have
been added the total cost responsibility of each vehicle
class is computed as simple addition of its cost
responsibility for all thickness increments and base
facility (23,26).

The pavement rehabilitation cost allocation method
used in 1982 Federal HCA study, did not explicitly
consider the effect of maintenance cost in its analysis or
the interaction between different distresses (28). These
limitations of federal methods were identified by Fwa
and Sinha (28) who proposed an aggregate damage
model for relating pavement performance to pavement
maintenance.

3. I997 Federal HCA Study

The last major HCA study at federal level was
conducted in 1997 and further updated by an adden-
dum in 2000. The purpose of that study was to estimate
cost responsibilities of different vehicle classes for
federal highway program cost and to evaluate whether
different vehicle classes paid a proportionate share of
their cost responsibility. It was also aimed at studying
the impact of changes in Federal-aid highway program
and different user fees on the equity of Federal highway
user fee structure (17).

For the pavement cost allocation, in addition to new
pavement cost and rehabilitation cost, maintenance
cost was also considered. New pavement cost allocation
approach used in 1997 Federal HCA study is similar to
1982 Federal HCA study. Uniform removal technique
or reverse incremental method was used to allocate
construction cost of new pavement. However, unlike
1982 Federal HCA study, the base facility cost was
allocated to different vehicle classes in proportion to
vehicle miles travelled weighted by passenger car
equivalent (PCE) for each vehicle class. The enhanced
facility cost of the new pavement was allocated using
the procedure similar to 1982 Federal HCA study
(where costs were assigned on the basis of ESAL
contribution).

For allocation of rehabilitation and maintenance
costs, the national pavement cost model (NAPCOM)
was adopted. NAPCOM uses the basic framework
(individual distress models) of the 1982 Federal HCA
study but with significant improvements. NAPCOM
helps to establish the applicable types of pavement
deterioration and the responsible vehicle. Pavement
deterioration analysis was carried out using data from
Highway Performance Monitoring System (HPMS)
pavement sections. The study considered load- and
non-load-related cost for pavement rehabilitation and
maintenance. The load-related costs are determined
using NAPCOM instead of the fourth-power law. The
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non-load portion of cost was attributed to climatic and
aging effects and hence was shared among all vehicle
classes based on their VMT contribution. The load-
related portion of cost was estimated on the basis of
share of each vehicle class to pavement distresses
resulting from that particular vehicle class for different
road functional classes. The pavement distress model
also estimated the cost share due to climate and aging.
All expenditures in a particular year were allocated to
road users. Unlike previous studies, the 1997 federal
HCA study also considered marginal social costs, i.e.,
air pollution, noise, congestion, crash costs and waste
disposal cost (17,22). The incremental pavement
deterioration cost associated with an extra mile of
travel, was found to vary with pavement design and
condition. The pavement damage cost attributable to
each additional mile of travel, for different vehicles, is
summarized in Table II.A.1.

4. 2009 Oregon HCA Study

In 1937, the first highway cost allocation study in the
nation was carried in Oregon, and to date, the state has
conducted sixteen highway cost allocation studies so
far. The latest study, in 2009 used the FHWA road
classification system. All vehicles weighing less than
10,000 pounds gross weight were placed in light or
‘‘basic’’ vehicles group, while all other vehicles were
classified as heavy vehicles. The cost of new pavement
construction was allocated using incremental method.
For allocation of load-related portion of maintenance
and rehabilitation cost NAPCOM equations were used.
Non-load-related or common costs were allocated using
a number of cost allocators. The study results found
that light vehicles (vehicles weighing less than 10,000
lbs) were projected to pay 67.1% of the state highway
users’ revenue while heavy vehicles were estimated to
contribute 32.9% during the projected period. The
equity ratio for light and heavy vehicles was found to be
0.9915 and 1.0173, respectively. The equity ratio for
individual heavy vehicles was found to vary for
different vehicles: certain classes were found to be
overpaying while others were underpaying their fair
share.

5. Performance-Based Methodology

According to the performance-based methodology
presented by Fwa and Sinha (28), the pavement damage
due to load factors and explained by AASHTO equations
is bounded between no-loss line and design equation
curve (represented by area A in Figure II.A.1); the
pavement damage due to non-load factors and interaction
between load-related and non-load-related is bounded
between design equation curve and zero-maintenance
curve (represented by area B in Figure II.A.1). The load
and non-load-related cost shares were estimated using the
proportionality assumption and equations presented as
follows (27,28):

a

azbzczdð Þ~
b

bzczdð Þ ðII:A:1Þ

d

(azbzczd
~

c

azbzcð Þ ðII:A:2Þ

These equations assume that the load share of the
interaction damage is directly proportional to the load
share of the overall damage. A similar assumption is
made for the non-load share (Figure II.A.2). That
study found that load-related costs accounted for up to
70 percent of total maintenance expenditure. The load-
related cost was assigned on the basis of ESAL while
non-load portion of cost was allocated on the basis of
vehicle-miles travelled. Traffic loading, environmental
effects, pavement characteristics and routine mainte-
nance were identified as the four major factors
influencing pavement performance.

6. National Pavement Cost Models

The improvements to individual distress model or
federal method for pavement damage cost estimation
continued during eighties and nineties. The mechanistic
pavement distress models developed for 1982 federal
HCA study were based on a small number of
hypothetical pavement sections (17). Original models
were improved by using actual pavement section data
from Highway Performance Monitoring System
(HPMS) and also in addition to models used in 1982

TABLE II.A.1
Unit PDC for Various Truck Types by Functional Class (18)

Road Type Vehicle Class Pavement Damage Cost (Cents per Mile, $1997)

Rural Interstate 40,000 4-axle single unit truck 1.0

Urban Interstate 40,000 4-axle single unit truck 3.1

Rural Interstate 60,000 4-axle single unit truck 5.6

Urban Interstate 60,000 4-axle single unit truck 18.1

Rural Interstate 60,000 5-axle combination truck 3.3

Urban Interstate 60,000 5-axle combination truck 10.5

Rural Interstate 80,000 5-axle combination truck 12.7

Urban Interstate 80,000 5-axle combination truck 40.9
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Federal HCA study, some new models for both flexible
and rigid pavements were developed which resulted into
National Pavement Cost Model (NAPCOM).

NAPCOM was first used in 1997 Federal HCA
study. NAPCOM also helped to develop load equiv-
alency factors (LEF) at national and state level using
data from HPMS pavement sections. Pavement dete-
rioration curves developed using NAPCOM are less
steep sloped unlike the approximate 4th power relation-
ship established by AASHTO. In NAPCOM separate
pavement wear relationship for different distresses have
been developed, unlike a single pavement deterioration
relationship based on a subjective criterion (Present
Serviceability Index (PSI)) used by AASHTO.

Pavement deterioration analysis is applied to a large
number of representative pavement sections to deter-
mine the pavement condition at end of each year of
analysis. When a pavement section reaches threshold
level of any specific distress, distress level, its contribu-
tion to rehabilitation and reconstruction decision and,
vehicle responsible for distress are recorded by
NAPCOM. NAPCOM outputs vehicle class responsi-
bility for 20 different vehicle classes, and for 10
different road functional classes. NAPCOM uses
individual distress model for flexible and rigid pave-
ment. For flexible pavements NAPCOM has individual
distress models for traffic-related Present Serviceability
Rating (PSR) loss, expansive-clay-related PSR loss,

fatigue cracking, thermal cracking, rutting, and loss of
skid resistance, and for rigid pavement the distress
models includes traffic related PSR loss, faulting, loss
of skid resistance, fatigue cracking, spalling and soil-
induced swelling and depression.

The number of lanes, pavement type and thickness,
pavement condition, average daily traffic, percentage of
heavy vehicles, estimated 20-year traffic levels and some
basic pavement information needed for NAPCOM are
extracted from HPMS pavement sections data.
Addition data items like freeze-thaw cycles, freezing
index, modulus of subgrade reaction and thickness of
base layer are obtained from other sources. In its
pavement analysis, NAPCOM uses HPMS sections
PSR and International Roughness Index (IRI) data to
estimate the age of different pavement sections (as PSR
and IRI are the only two pavement condition data
which are reported by HPMS). NAPCOM estimates the
level of other distresses like rutting and cracking etc.
using age and accumulated traffic. NAPCOM uses an
overall pavement condition rating (OPCR) which is
calculated by applying ‘‘deduction point’’ for different
distress level. The current deterioration levels of a
pavement segment are multiplied with maximum
deduction points allowed for a particular distress and
subtracted from 100. A pavement is considered candi-
date for rehabilitation when OPCR is 10 or less. The
different deduction points considered in NAPCOM are
summarized in Table II.A.2.

A national model that was developed using data
from individual states, NAPCOM is unable to tailor all
specific parameters of the model to best match the
conditions in each state (148). Although the NAPCOM

Figure II.A.2 Load and non-load-related pavement damage (28).

Figure II.A.1 PSI-ESAL loss as a representation of pave-
ment damage (28).

TABLE II.A.2
Deduction Point System Used by NAPCOM

Distress Type Flexible Pavement Rigid Pavement

PSR Loss 50 50

Cracking 25 30

Rutting 30 —

Skid resistance loss 20 20

Faulting — 30

Spalling — 10

Swelling and depression — 20
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uses data from HPMS pavement section, missing
pavement information is imputed for PDC estimation
purposes. NAPCOM estimated PDC is at aggregate
level as it uses aggregate value of annual highway
expenditure by road functional class and vehicles miles
of travel by vehicle configuration and road functional
class. Also, NAPCOM is not tailored to be consistent
with specific maintenance strategies typically used by
highway agencies. Highway agencies use different
trigger criteria for maintenance and rehabilitation
decision making; NAPCOM’s use of only one criterion
may not be appropriate.

PART II. APPENDIX B. MODELS AND MPDC
ESTIMATES USING ECONOMETRIC APPROACH

1. Gibby et al. (33) Maintenance Cost Model

Using pavement maintenance cost data from ran-
domly selected pavement sections, the following main-
tenance cost model was developed:

TOTALCOST~ 47 � 106
� �

� HT AADT0:21
� �

�

PL AADT0:06
� �

� AGE0:17
� �

� AATEMP{2:11
� �

� SHD{0:36
� �

� eNOSHD
� �{0:61� eMTN

� �{0:38

� eBR
� �{14:9� eMNCL

� �{1:23� eDIST2
� �0:66� eDIST11

� �0:60

Where: TOTALCOST is the total pavement main-
tenance cost for a one-mile section over three fiscal years
(1984–1987), in dollars; HT_AADT is the daily volume of
trucks with at least 5 axles; PL_AADT is the daily volume
of passenger cars and trucks with less than 4 axles; AGE is
the pavement age (the time since last major pavement
work), in years; AATEMP is the average annual
temperature, in degree Fahrenheit; SHD is the Shoulder
width, in ft; NOSHD (15 no shoulder; 05shoulder);
MTN (l 5 Mountain climate; 0 5 not Mountain climate);
BR (l 5 the one mile is entirely bridge section; 05at least
part of the section not a bridge); MNCL(l 5 minor
collector; 0 5 not minor collector); DIST2 (l 5 Caltrans
District 2; 0 5 not District 2); DIST11 (l 5 Caltrans
District 11; 0 5 not District 11).

2. Martin (34) Maintenance and Construction
Expenditure Models

Maintenance Expenditure Model

Maint EXPEND~azb1 � RUVð Þzb2 �Pavement Age

Where: Maint EXPEND 5 the annual average total
maintenance expenditure/annual average routine main-
tenance expenditures or annual average periodic main-
tenance expenditure; RUV 5 the road use variable and
has forms (1) Cumulative ESAL/lane/year (Heavy
Vehicles) (2) Cumulative Gross Vehicle mass/lane/year

(Heavy Vehicles) (3) Cumulative passenger car units/
lane/year (All Vehicles), and (4) AADT/lane (All
Vehicles).

Construction Expenditure Model

For estimating pavement construction costs ($/lane-
mile), Martin (34) developed relationship between total
pavement construction cost and pavement design
variable. The general functional form of the model is
as follows:

Const EXPEND~azb1 � PDVz

b2 � PDV2zb3 � PDV3

Where: Const EXPEND 5 the total expenditure for
pavement construction or replacement per lane-Km;
PDV is the pavement design variable and has three
forms: (1) Cumulative ESAL/lane over pavement
design life, (2) Cumulative Gross Vehicle mass/lane
over pavement design life, and (3) Cumulative passen-
ger car units/lane over pavement design life.

3. Hajek et al. (35) Maintenance Cost Models and PDC
Estimates

The following models were developed by Hajek et al.
(35):

EUACNew Pavements~1601z

311 Log10ESALð Þ2z1394Nze

EUACIn{Service Pavements~100z

160 Log10ESALð Þ2z558Nze

The two ESAL cost functions were differentiated to
obtain the marginal cost as follows:

MCOSTNew Pavements~622
Log10ESALs

ln 10:ESALs

� 	

MCOSTIn{service Pavements~322
Log10ESALs

ln 10:ESALs

� 	

Where: EUACNew Pavements 5 Equivalent uniform
annual cost (EUAC) per lane (new pavements);
EUACIn-Service Pavements 5 EUAC per lane for in-service
pavements; ESALs 5 annual number of equivalent
single axle loads per lane; N 5 indicator variable (0 for
southern and 1 for northern Ontario); e 5 error;
MCOSTNew Pavements 5 MPDC per ESAL-km for a
new pavement; MCOSTIn-service Pavements 5 MPDC per
ESAL-km for a in-service pavement.

The pavement maintenance and rehabilitation cost
per ESAL-km estimated by Hajek et al. (35) for
different road classes are summarized in Table II.B.1.
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3. Li and Sinha (36) Load- and Non-Load-Related
Rehabilitation and Maintenance Cost Models

Rehabilitation and Periodic Maintenance Models for
Flexible Pavements

EXPEND Rð Þ~172,430z0:3113
CESALs

THICK

� 	

z300:8 P200 �MOIST � FZIð Þ

{145,380 �DRAINCO

z701:2 AGE{10ð Þ �DM

EXPEND MRð Þ~170,310z0:3110
CESALs

THICK

� 	

z300:7 P200 �MOIST � FZIð Þ

{143,240 �DRAINCO

z700:4 AGE{10ð Þ �DM

Rehabilitation and Periodic Maintenance Models for
JCP

EXPEND Rð Þ~{629,000z0:038 CESALsð Þ{

40,020 SLABTHð Þz

13,274 Daysw32Cð Þz34,760 �AGE

EXPEND MRð Þ~{665,900z0:0374 CESALsð Þ{

38,800 SLABTHð Þz

13,409 Daysw32Cð Þz37,610 �AGE

Rehabilitation and Periodic Maintenance Models for
Composite Pavements

EXPEND Rð Þ~z540,900z0:2409
CESALs

THICK

� 	

z71:03 MOIST � FZIð Þ

{10,393 �MINTEM

z10,593� AGE{10ð Þ �DM

EXPEND Rð Þ~z448,400z0:2327
CESALs

THICK

� 	

z71:05 MOIST � FZIð Þ

{8,337 �MINTEM

z8,962� AGE{10ð Þ �DM

Where: EXPEND (R) 5 expected rehabilitation
expenditures after the service of a life cycle ($/lane-mile);
EXPEND (MR) 5 expected periodic maintenance and
rehabilitation expenditures after the service of a life cycle
($/lane mile); CESALs 5 Total ESALs (18 kips) applied
to the pavement during a life cycle; THICK 5 total
thickness of flexible and composite pavements (inches);
SLABTH 5 slab thickness of JCP pavements (inches);
P200 5 subgrade material percent passing a No. 200 sieve
(weight%); MOIST 5 subgrade moisture content (%);
FZI 5 average freeze index during one life cycle (in
degree-days); DRAINCO 5 drainage coefficient; DAYS
. 32uC 5 annual average number of days greater than
32uC during one life cycle; MINTEM 5 annual average
minimum temperature in one life cycle (uF); AGE 5

pavement age at time of rehabilitation (in years); DM 5

dummy variable (1 if age $11 years, 0 otherwise).

Marginal Pavement Maintenance and Rehabilitation
Expenditure for flexible Pavements

MEXPEND Rð Þ~
0:3133

THICK

MEXPEND MRð Þ~
0:3110

THICK

For Jointed Concrete Pavements

MEXPEND Rð Þ~
0:038

THICK

MEXPEND MRð Þ~
0:0374

THICK

For Composite Pavements

MEXPEND Rð Þ~
0:2409

THICK

TABLE II.B.1
Pavement Damage Cost—Ontario, Canada (35)

Highway Class

Marginal Pavement Cost Per ESAL-Mile ($) Marginal Pavement Cost Per Mile for 5-Axle Truck ($)

Pavement Type Pavement Type

New In-Service New In-Service

Urban freeway 0.0025 0.0013 0.004 0.002

Major arterial 0.0092 0.0047 0.014 0.007

Minor arterial 0.0158 0.0082 0.024 0.012

Collector 0.01401 0.0206 0.060 0.031

Local 0.5968 0.3070 0.895 0.461
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5. MPDC Estimation by Link (43)

Link (43) used the logarithm of the sum of reha-
bilitation cost as dependent variable for his model. The
estimated model has following functional form:
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Where: i 5 index for motorway sections; j 5 index
for state; c 5 constant; Ci 5 sum of renewal costs from
1980 to 1999, expressed as costs per km; DSij 5 dummy
variable for the federal state where section i is located
(j5 1…10); Cpast 5 renewal costs before 1980
(categorical variable with 0, 1, 2, 3); LN5 number of
lanes; u1 5 passenger cars AADT u2 5 goods vehicles
(trucks) AADT; Age 5 age of motorway section.

The Link study used the ratio of AADT of passenger
cars to AADT of trucks to estimate the marginal cost
using following expression:

LC

Lc
~eb2 rb4 age0:5�b6

PART II. APPENDIX C. MPDC ESTIMATES
USING ENGINEERING APPROACH

1. MPDC Estimates—Small et al. (50)

2. MPDC Estimates—Vitaliano and Held (52)

3. MPDC Estimates—Anani and Madanat (48)

TABLE II.C.1
Pavement Maintenance Cost by Road Classification (50)

Road Functional Class

MPDC Cents per ESAL-mile ($1985)

Current Investment Optimal Investment

Rural Interstate 1.48 0.46

Rural principal arterial 4.38 1.13

Minor arterial 10.02 2.60

Major collector 16.49 9.96

Minor collector 31.18 16.09

Local 101.30 101.30

Urban Interstate 2.38 0.33

Urban freeway 4.32 0.61

Urban principal arterial 10.92 0.87

Minor arterial 33.92 3.23

Collector 125.45 13.66

Local 40.92 40.92

TABLE II.C.2
Pavement Maintenance Cost—New York Roads (52)

Road Functional Class

PMDC $ per mile ($1990)

5-axle

Tractor-trailer

$ Per

ESAL-mile

Rural and urban Interstate 0.030 0.0115

Urban expressway 0.069 0.026

Rural expressway 0.064 0.024

Urban arterial 0.138 0.052

Rural minor arterial 0.106 0.04

Urban minor arterial/collector 0.387 0.146

Rural collector 0.742 0.280

TABLE II.C.3
Assumptions for MPDC Estimation in the Anani and Madanat
Study (48)

Details Default Values

ESALs to failure for periodic maintenance treatment 200,000

ESALs to failure for rehabilitation 500,000

Annual traffic loading 100,000

Unit cost for periodic maintenance ($/lane-mile) 20,000

Unit cost for rehabilitation ($/lane-mile) 200,000

Discount rate 0.05

No. periodic maintenance treatments between two

rehabilitations

2

TABLE II.C.4
MPDC Estimates in the Anani and Madanat Study (48)

Marginal Pavement Damage Cost ($/ESAL-mile)

Periodic Maintenance

and Rehabilitation

Periodic Maintenance

Only

Rehabilitation

Only

0.4902 0.1025 0.4080
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PART II. APPENDIX D. MISCELLANEOUS APPROACHES FOR PDC ESTIMATION

PART II. APPENDIX E. VEHICLE CLASSES FOR MPDC ESTIMATION

TABLE II.D.1
Vehicle Load for different Commodities and Weight Scenarios (56)

Commodity/Scenario Highway Type

5-Axle Semitrailer

Steering Axle (lbs) Tandem Axle (lbs) Tandem Axle (lbs) GVW (lbs)

Rice and Sugarcane

Scenario 1 State route 12,000 37,000 37,000 86,000

Interstate 12,000 34,000 34,000 86,000

Scenario 2 State route 12,000 44,000 44,000 100,000

Interstate 12,000 44,000 44,000 100,000

Scenario 3 State route 12,000 44,000 44,000 100,000

Interstate 12,000 44,000 44,000 100,000

Timber

Scenario 1 State route 12,000 37,000 37,000 86,000

Interstate 12,000 34,000 34,000 86,000

Scenario 2 State route 12,600 37,000 37,000 86,600

Interstate 12,000 35,700 35,700 83,400

Scenario 3 State route 12,000 44,000 44,000 100,000

Interstate 12,000 44,000 44,000 100,000

Commodity/Scenario Highway Type 2-Axle Truck

Steering Axle (lbs) Tandem Axle (lbs) GVW (lbs)

Cotton*

Scenario 1 State route 12,000 37,000 49,000

Scenario 2 State route 12,000 48,000 68,000

Scenario 3 State route 12,600 48,000 68,000

*Cotton transportation on state route only.

TABLE II.E.1
FHWA Vehicle Classes

Vehicle Class Description

1 Motorcycles

2 Passenger cars

3 Other 2 axle, 4 tire single units

4 Buses

5 2 axle, 6 tire single units

6 3 axle single units

7 4 or more axle single units

8 4 or less axle single trailers

9 4 axle single trailers

10 6 or more axle single trailers

11 5 or less axle multi-trailers

12 6 axle multi-trailers

13 7 or more axle multi-trailers

Source: (149).
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PART II. APPENDIX F. TRAFFIC VOLUME ADJUSTMENT FACTORS

Figure II.F.1 INDOT traffic volume adjustment factors (110).
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PART II. APPENDIX G. MR&R STRATEGIES

MR&R Strategies - Flexible Pavement (Interstate)

Figure II.G.1 M&R Profile for Flexible Pavement (Interstate) –1 (Very High Traffic).

Figure II.G.2 M&R Profile for Flexible Pavement (Interstate) –2 (Very High Traffic).

Figure II.G.3 M&R Profile for Flexible Pavement (Interstate) –3 (Very High Traffic).
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Figure II.G.5 M&R Profile for Flexible Pavement (Interstate) –5 (Very High Traffic).

Figure II.G.4 M&R Profile for Flexible Pavement (Interstate) –4 (Very High Traffic).

Figure II.G.6 M&R Profile for Flexible Pavement (Interstate) –6 (High Traffic).

Figure II.G.7 M&R Profile for Flexible Pavement (Interstate) –7 (High Traffic).
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Figure II.G.8 M&R Profile for Flexible Pavement (Interstate) –8 (High Traffic).

Figure II.G.9 M&R Profile for Flexible Pavement (Interstate) –9 (High Traffic).

Figure II.G.10 M&R Profile for Flexible Pavement (Interstate) –10 (High Traffic).

Figure II.G.11 M&R Profile for Flexible Pavement (Interstate) –11 (Medium Traffic).
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Figure II.G.12 M&R Profile for Flexible Pavement (Interstate) –12 (Medium Traffic).

Figure II.G.13 M&R Profile for Flexible Pavement (Interstate) –13 (Medium Traffic).

Figure II.G.14 M&R Profile for Flexible Pavement (Interstate) –14 (Medium Traffic).

Figure II.G.15 M&R Profile for Flexible Pavement (Interstate) –15 (Medium Traffic).
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Figure II.G.16 M&R Profile for Flexible Pavement (Interstate) –16 (Low Traffic).

Figure II.G.17 M&R Profile for Flexible Pavement (Interstate) –17 (Low Traffic).

Figure II.G.18 M&R Profile for Flexible Pavement (Interstate) –18 (Low Traffic).

Figure II.G.19 M&R Profile for Flexible Pavement (Interstate) –19 (Low Traffic).

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/0196



MR&R Strategy – HMA NHS (NIS)

Figure II.G.20 M&R Profile for Flexible Pavement (Interstate) –20 (Low Traffic).

Figure II.G.21 M&R Profile for Flexible Pavement (NHS (NIS)) –1 (Very High Traffic).

Figure II.G.22 M&R Profile for Flexible Pavement (NHS (NIS)) –2 (Very High Traffic).

Figure II.G.23 M&R Profile for Flexible Pavement (NHS (NIS)) –3 (Very High Traffic).
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Figure II.G.24 M&R Profile for Flexible Pavement (NHS (NIS)) –4 (Very High Traffic).

Figure II.G.25 M&R Profile for Flexible Pavement (NHS (NIS)) –5 (Very High Traffic).

Figure II.G.26 M&R Profile for Flexible Pavement (NHS (NIS)) –6 (High Traffic).

Figure II.G.27 M&R Profile for Flexible Pavement (NHS (NIS)) –7 (High Traffic).
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Figure II.G.28 M&R Profile for Flexible Pavement (NHS (NIS)) –8 (High Traffic).

Figure II.G.29 M&R Profile for Flexible Pavement (NHS (NIS)) –9 (High Traffic).

Figure II.G.30 M&R Profile for Flexible Pavement (NHS (NIS)) –10 (High Traffic).

Figure II.G.31 M&R Profile for Flexible Pavement (NHS (NIS)) –11 (Medium Traffic).
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Figure II.G.32 M&R Profile for Flexible Pavement (NHS (NIS)) –12 (Medium Traffic).

Figure II.G.33 M&R Profile for Flexible Pavement (NHS (NIS)) –13 (Medium Traffic).

Figure II.G.34 M&R Profile for Flexible Pavement (NHS (NIS)) –14 (Medium Traffic).

Figure II.G.35 M&R Profile for Flexible Pavement (NHS (NIS)) –15 (Medium Traffic).
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Figure II.G.36 M&R Profile for Flexible Pavement (NHS (NIS)) –16 (Low Traffic).

Figure II.G.37 M&R Profile for Flexible Pavement (NHS (NIS)) –17 (Low Traffic).

Figure II.G.38 M&R Profile for Flexible Pavement (NHS (NIS)) –18 (Low Traffic).

Figure II.G.39 M&R Profile for Flexible Pavement (NHS (NIS)) –19 (Low Traffic).
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Life-cycle M&R Profiles – Flexible Pavements (NNHS)

Figure II.G.40 M&R Profile for Flexible Pavement (NHS (NIS)) –20 (Low Traffic).

Figure II.G.41 M&R Profile for Flexible Pavement (NNHS) –1 (Very High Traffic).

Figure II.G.42 M&R Profile for Flexible Pavement (NNHS) –2 (Very High Traffic).

Figure II.G.43 M&R Profile for Flexible Pavement (NNHS) –3 (Very High Traffic).
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Figure II.G.44 M&R Profile for Flexible Pavement (NNHS) –4 (Very High Traffic).

Figure II.G.45 M&R Profile for Flexible Pavement (NNHS) –5 (Very High Traffic).

Figure II.G.46 M&R Profile for Flexible Pavement (NNHS) –6 (High Traffic).

Figure II.G.47 M&R Profile for Flexible Pavement (NNHS) –7 (High Traffic).
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Figure II.G.48 M&R Profile for Flexible Pavement (NNHS) –8 (High Traffic).

Figure II.G.49 M&R Profile for Flexible Pavement (NNHS) –9 (High Traffic).

Figure II.G.50 M&R Profile for Flexible Pavement (NNHS) –10 (High Traffic).

Figure II.G.51 M&R Profile for Flexible Pavement (NNHS) –11 (Medium Traffic).
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Figure II.G.52 M&R Profile for Flexible Pavement (NNHS) –12 (Medium Traffic).

Figure II.G.53 M&R Profile for Flexible Pavement (NNHS) –13 (Medium Traffic).

Figure II.G.54 M&R Profile for Flexible Pavement (NNHS) –14 (Medium Traffic).

Figure II.G.55 M&R Profile for Flexible Pavement (NNHS) –15 (Medium Traffic).
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Figure II.G.56 M&R Profile for Flexible Pavement (NNHS) –16 (Low Traffic).

Figure II.G.57 M&R Profile for Flexible Pavement (NNHS) –17 (Low Traffic).

Figure II.G.58 M&R Profile for Flexible Pavement (NNHS) –18 (Low Traffic).

Figure II.G.59 M&R Profile for Flexible Pavement (NNHS) –19 (Low Traffic).
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Life-cycle M&R Profiles – Rigid Pavements (Interstate)

Figure II.G.60 M&R Profile for Flexible Pavement (NNHS) –20 (Low Traffic).

Figure II.G.61 M&R Profile for Rigid Pavement (Interstate) –1 (Very High Traffic).

Figure II.G.62 M&R Profile for Rigid Pavement (Interstate) –2 (Very High Traffic).

Figure II.G.63 M&R Profile for Rigid Pavement (Interstate) –3 (Very High Traffic).
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Figure II.G.64 M&R Profile for Rigid Pavement (Interstate) –4 (Very High Traffic).

Figure II.G.65 M&R Profile for Rigid Pavement (Interstate) –5 (High Traffic).

Figure II.G.66 M&R Profile for Rigid Pavement (Interstate) –6 (High Traffic).

Figure II.G.67 M&R Profile for Rigid Pavement (Interstate) –7 (High Traffic).
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Figure II.G.68 M&R Profile for Rigid Pavement (Interstate) –8 (High Traffic).

Figure II.G.69 M&R Profile for Rigid Pavement (Interstate) –9 (Medium Traffic).

Figure II.G.70 M&R Profile for Rigid Pavement (Interstate) –10 (Medium Traffic).

Figure II.G.71 M&R Profile for Rigid Pavement (Interstate) –11 (Medium Traffic).
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Figure II.G.72 M&R Profile for Rigid Pavement (Interstate) –12 (Medium Traffic).

Figure II.G.73 M&R Profile for Rigid Pavement (Interstate) –13 (Low Traffic).

Figure II.G.74 M&R Profile for Rigid Pavement (Interstate) –14 (Low Traffic).

Figure II.G.75 M&R Profile for Rigid Pavement (Interstate) –15 (Low Traffic).
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Figure II.G.76 M&R Profile for Rigid Pavement (Interstate) –16 (Low Traffic).

Figure II.G.77 M&R Profile for Rigid Pavement (Non-Interstate) –1 (Very High Traffic).

Figure II.G.78 M&R Profile for Rigid Pavement (Non-Interstate) –2 (Very High Traffic).

Figure II.G.79 M&R Profile for Rigid Pavement (Non-Interstate) –3 (Very High Traffic).
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Figure II.G.80 M&R Profile for Rigid Pavement (Non-Interstate) –4 (Very High Traffic).

Figure II.G.81 M&R Profile for Rigid Pavement (Non-Interstate) –5 (High Traffic).

Figure II.G.82 M&R Profile for Rigid Pavement (Non-Interstate) –6 (High Traffic).

Figure II.G.83 M&R Profile for Rigid Pavement (Non-Interstate) –7 (High Traffic).
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Figure II.G.84 M&R Profile for Rigid Pavement (Non-Interstate) –8 (High Traffic).

Figure II.G.85 M&R Profile for Rigid Pavement (Non-Interstate) –9 (Medium Traffic).

Figure II.G.86 M&R Profile for Rigid Pavement (Non-Interstate) –10 (Medium Traffic).

Figure II.G.87 M&R Profile for Rigid Pavement (Non-Interstate) –11 (Medium Traffic).
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Figure II.G.88 M&R Profile for Rigid Pavement (Non-Interstate) –12 (Medium Traffic).

Figure II.G.89 M&R Profile for Rigid Pavement (Non-Interstate) –13 (Low Traffic).

Figure II.G.90 M&R Profile for Rigid Pavement (Non-Interstate) –14 (Low Traffic).

Figure II.G.91 M&R Profile for Rigid Pavement (Non-Interstate) –15 (Low Traffic).
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Figure II.G.92 M&R Profile for Rigid Pavement (Non-Interstate) –16 (Low Traffic).
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PART III. BRIDGE DAMAGE COST ESTIMATION

8. INTRODUCTION

8.1 Background and Problem Statement

The Indiana Department of Transportation
(INDOT), tasked with the stewardship of billions of
dollars’ worth of publicly-invested highway bridge
infrastructure, continually seeks policies that prevent
accelerated deterioration of its bridges through exces-
sive loading and other factors. Consistent with this
objective, INDOT wishes to determine the infrastruc-
ture damage caused by overweight vehicles, to serve as
a basis for updating the existing structure for bridge use
by overweight trucks. This knowledge would enable the
agency to ascertain the true costs of overweight vehicle
operations in terms of bridge damage repair.

In 1984, INDOT commissioned a cost allocation
study to restructure the user charges that existed at the
time (150). Then in 1988, the 1984 study was updated to
provide information for an intended change in the fuel
tax rate. From a general perspective, highway cost
allocation and the concomitant analysis of revenue
contribution for heavy truck permitting are recognized
as a part of a continuous process of pricing and
financing highway service delivery.

The need for a cost allocation study in Indiana for
purposes of updating the state’s heavy truck permitting
fee structures for the state’s bridges and pavements was
further accentuated in a recent INDOT study that
synthesized overweight vehicle permitting practices,
including permit fee schedules and amounts, across
the Midwest states in relation to the practice in Indiana
(151).

8.2 Objective of the Study

The primary objective of the bridge aspect of the
research is to estimate the bridge damage cost caused by
overweight vehicles and relate it to truck operations in
Indiana. It is expected that the investigation would
yield an updated and more detailed methodology for
attributing the costs of bridge repair. Pursuant to this
overall objective, other objectives were:

N Identify the costs and revenues related to overweight
vehicle operations at the state highway bridges in
Indiana.

N Compare costs by vehicle weight class.

8.3 Study Scope

The study was carried out for bridges on the state
highway system only. This means that the relevant
route types were: Interstates, US Highways, and State
Roads. For purposes of the study, bridges on these
three route types were classified as follows: Interstate,
NHS non-Interstate, and non-NHS. Bridges on county
and local roads were excluded. From the perspective of

bridge material type, the study scope covered the
following: steel, prestressed concrete, reinforced con-
crete. Also, recognizing that the damage costs can vary
by bridge condition or age, the bridges were placed into
groups of 15–20 age (years). With respect to the source
of damage inflicted to the bridge structure, the scope
covered the standard AASHTO vehicle types, namely,
HS-20 to H-41.

8.4 Organization of Part III the Report

This part of the report has six chapters. Chapter 9
reviews the existing literature and the study methodol-
ogy related to the concepts of incremental cost analysis
used for bridge cost allocation studies. Chapter 10
discusses the cost allocation methodology and its
developmental components and addresses the question
of what constitutes an overweight truck and how
overweight truck traffic volumes are estimated. Chapter
10 also presents the developed statistical model that
correlates AASHTO vehicles to FHWA vehicles and
the incremental bridge cost allocation methodology
that was developed in this research to allocate bridge
damage cost to each vehicle class, including overweight
trucks. Chapter 11 shows how the bridge life-cycle costs
were estimated and Chapter 12 applies the methodol-
ogy discussed in Chapter 10 to allocate the life-cycle
costs that were estimated in Chapter 11. Chapter 13
presents the report summary and conclusions.

9. ESTIMATION OF BRIDGE DAMAGE COSTS

9.1 Introduction

This chapter presents a literature review on bridge
damage cost estimation. The Chapter also discusses the
incremental cost analysis methodology which is scien-
tifically-proven and accepted for bridge cost allocation
(152–155). The chapter also presents the types of costs
used in the analysis and argues for the use of a full life-
cycle cost analysis instead of the cost per activity, for
the purposes of the costing aspect of the analysis.
Finally, case studies related to the estimation of bridge
damage costs for purposes of highway cost allocation,
at the state and federal levels, are discussed.

As evidenced in the literature, there are various
methods for estimating the costs of bridge damage.
Often, this has been done as part of cost allocation
studies (150). The most commonly-used approach is the
cost-occasioned approach where each user is designated
to pay an amount that is commensurate with the
damage that the user causes or ‘‘occasions’’ by using the
bridge. This approach was used in the last two highway
cost allocation studies at the federal level (153,156).
Also, a majority of the states have used this approach
to allocate bridge costs (157).

An important issue that often arises with infrastruc-
ture damage cost estimation and cost allocation is
equity. Critics contend, for example, that different
vehicles within the same class can have varying impacts
of damage on a bridge structure, and thus should pay
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different amounts for the use of the bridge. This
contrasts with current policy at several states where all
vehicles in a single class are charged the same amount
for the use of the bridge. Equity, in the context of
damage cost estimation and cost allocation, can be
defined as payment of charges by each vehicle class in a
manner that is proportionate to the true share of that
vehicle class of the agency cost of the infrastructure
provision and upkeep.

9.2 Incremental Cost Analysis

Incremental cost analysis, a technique based on the
cost-occasioned approach, is widely used by highway
agencies to estimate the cost of bridge damage by vehicle
class because it has been found to be theoretically sound
and widely acceptable. Incremental analysis involves
repetitive designs of the bridge structure for different
vehicle loadings (150). Then, for each loading-design
configuration, the initial (construction) and life-cycle
costs are estimated. For example, an automobile,
compared to a heavy truck, requires a bridge structure
of lower strength.

Thus, the incremental analysis estimates the cost of
bridge damage on the basis of an incremental bridge
design that indicates changes in bridge strength in order
to accommodate increasingly higher classes (and
weights) of vehicles. In most cases, any inaccuracies in
bridge damage cost estimation and cost allocation using
the incremental cost methodology are likely due to the
use of a single bridge as a basis of the analysis (the
bridge that is used may not be representative of the
different types of bridges on the network); estimation of
the damage costs and allocation of costs that are
unrelated to bridge design; and the lack of detailed
incremental analysis on the basis of the full range of

vehicle classes. Notwithstanding these limitations, the
classic incremental method is generally considered to be
fundamentally sound and is used widely by most state
agencies. Also, the FHWA used the incremental
method for highway damage cost estimation and cost
allocation until 1997 when it was modified (153).

The incremental approach is based fundamentally on a
set of bridge structural designs for a standard set of vehicle
loadings as defined by AASHTO (158). In the AASHTO
bridge specifications, traffic-related loadings are repre-
sented by standard trucks or equivalent lane loads. The
trucks are designated with an HS (tractor-trailer
combinations) or H (two-axle truck) prefix followed by
a number indicating the gross weight of the truck in tons.

The AASHTO bridge specifications provide four
vehicle classes of highway design (HS20, HS15, H20
and H15). From AASHTO specifications, H15 is 75%

of H20 (158). On the basis of the above designated
loadings, other loadings can be determined by propor-
tionally changing the standard weights. It may be noted
that the design vehicle classes or loads are different
from the gross vehicle weights (GVW). In order to
reliably estimate the loading, the GVW must be
correlated to the design vehicle or load classes. The
incremental cost analysis is illustrated in Figure 9.1. In
the incremental approach to bridge design, bridges are
typically first placed into families based on their design,
material type, size, and other characteristics.

9.2.1 Establishing a Vehicle Class

The vehicle classes used in the study were established
on the basis of FHWA vehicle classes. In this study,
only FHWA vehicle classes 7 to 13, that is, vehicles that
could possibly exceed the legal load limit, were
considered.

Figure 9.1 Steps in the incremental approach to bridge damage cost estimation.
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9.2.2 Establishing Bridge Classes

As stated in the Introduction, the study was carried
out for bridges on the state highway system only. For
the purpose of this study three bridge classes were used
(steel, prestressed and concrete) because they constitute
the majority of the types of bridges along the state
highway system.

9.2.3 Establishing Life-Cycle M&R Schedule and
Estimating Cost

In order to establish the cost for each bridge type, the
life-cycle maintenance and rehabilitation schedules were
established. A detailed discussion of the life-cycle
maintenance and rehabilitation schedules and cost
estimation is presented in Chapter 11.

9.2.4 Relating GVW to Vehicle Design Loads

At this step, a quantitative correlation needs to be
established between the weights of vehicles operating on
the highways and AASHTO’s design index loads. The
vehicle live load for highway bridges is typically
specified using design vehicles or lane loads. Each lane
load is represented by a standard truck with a trailer or
as a uniform load superimposed by concentrated loads.
These loads are typically designated as H or HS loads
in the AASHTO specifications. The design vehicles
range from H20–HS20. For example, an H20 load
simulates a two-axle single truck with a 14-foot wheel
base and a total weight of 20 tons (40,000 lbs) while an
HS-20 load is a three-axle tractor trailer combination
with variable wheel spacing and a total weight of 36
tons (72,000 lbs). In order to yield the maximum stress
for continuous spans bridges, a lane load or a truck
load can be used. A lane load consist of a uniform load
per linear foot of traffic loading combined with a single
concentrated load (for a simple span bridge) or two
concentrated loads for a continuous span bridge (158).

The basic AASHTO design loads are not the same as
the loads of trucks operating on the highways. Rather,
they are index loadings used to specify the design
criteria, and their configurations are designed to
simulate the maximum or severe live loads that operate
on bridges. A number of past studies (153,155) have
sought to correlate gross vehicle weights to the
AASHTO design loads (Tables 9.1 and 9.2).

Clearly, using this rather simple correlation approach
precludes the incorporation of the effect of two
remaining variables: axle load distributions and axle
spacing. In a bid to refine the process to capture axle
spacing and axle loading, Schelling and Saklas (154),
in a Maryland study, developed a new methodology
that established a relationship between the maximum
moments produced on a bridge based on the FHWA
vehicles and AASHTO design vehicles. Each vehicle
group was identified by its design axle loading and axle
spacing. In order to establish the correspondence, each
weight class in the basic truck group was represented by
loads acting on a simple bridge with alternate span
lengths of 42 ft. to 400 ft. The analytical relationship
was established using linear least squares techniques to
fit the data. Although this approach seems to be useful,
it was limited to only simply-supported single-span
bridge structures. Therefore, extending the model to
continuous spans can yield biased estimates.

To overcome this challenge, Tee et al. (159)
introduced the equivalent load approach that used
not the load but loading outcome (amount of deflection
or moment) produced by the AASHTO design vehicle.
Then the relationship was found between the loading
outcome and FHWA classes (not GVW). It can be
noted that the loading outcome, in terms of moment or
deflection, is influenced by axle spacing, the axle-load
distribution of the vehicles, and the bridge span type
(simple or continuous). Because it used the loading
outcome instead of the loads, the Tee methodology was
found to be more robust than the WisDOT (155),
FHWA (153), or Schelling and Saklas (154) methodol-
ogies. Although the Tee methodology is useful and
relevant, it requires a longer computation time and
some expertise in bridge design. In order to remove the
above barriers, modifications were made to the Tee
approach (also referred to as the equivalent load
approach), for the present study. These modifications
are discussed in Chapter 10.

9.2.5 Incremental Bridge Design

For a representative bridge representing each bridge
family, a basic structure is designed with the minimum
design load. The basic structure represents the mini-
mum dimensions for the structural components. The

TABLE 9.1
Correlation of AASHTO Vehicles and Gross Vehicle Weights
(155)

Gross Vehicle Weights (kips) AASHTO Design Loads

0–10 H5

11–20 H10

21–40 H15

41–52 H20

Over 52 H20

TABLE 9.2
Structure Design Increments (153)

Design Load (lbs) Design Increment

5,000 H2.5

10,000 H5

20,000 H10

30,000 H15

40,000 H20

54,000 HS15

63,000 HS17.5

72,000 HS20
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minimum design depends largely on the engineer’s
judgment and varies with the bridge type, span,
length, and crossing type. In the Wisconsin study
(155), for example, a 24-ft roadway and one layer of
steel bar reinforcement for 5-in concrete slabs were
considered to constitute the minimum requirement.
The structural types and span lengths were selected as
representative structures based on 150 bridges con-
structed in the State of Wisconsin during the base
period (1977–1980), which represent 96 percent of the
bridges constructed in that period. For each bridge type
and span length, a ‘‘basic’’ bridge was designed in the
Wisconsin study for the minimum vehicle load. Also,
different minimum designs carried out for highway
systems of different functional classes. Then, for each
additional increments of the design load up to the load
for which the bridge was originally designed, the bridge
is designed. The increments are established on the basis
of vehicle classification.

9.2.6 Estimation of Incremental Cost

After the incremental bridge design, the next stage
of analysis is the evaluation of the cost associated with
each increment of design using cost data often
obtained from contract documents. In order to
determine the number of bridges to use in the analysis,
any one of the four sampling approaches (full design
method, representative-bridge design method, semi-
statistical method, or heuristic method) could be used.
The full design method uses all of the bridges
constructed in the base period to find their incre-
mental designs and associated costs. This method is
more costly in terms of data collection but more
accurate compared to the other sampling methods.
However, the standardization of design procedures
and the required engineering judgment in the incre-
mental designs makes the full design method more
laborious in its implementation. This method was
used in the Maryland study (154).

The representative bridge method considers a group
of representative bridge types selected from the base
period and their span lengths. The difference between
the full design and representative methods is that in the
latter, a detailed incremental design and a cost
evaluation are performed only for a single representa-
tive bridge in each bridge family but not for the entire
population of bridges. For example, the Wisconsin
study (155) used only six bridges, each representing one
of the six bridge families established in that study. This
method is the most commonly used in the literature and
was adopted in two of the recent past cost allocation
studies at the federal level (160). This method may lead
to large variability in costs unless a sufficient number of
representative bridge types are included.

The semi-statistical method is very simple to use and
has been shown to be useful and therefore is considered
acceptable. It involves selecting two or more bridges to
represent each bridge family. A basic structure is then
designed for each bridge family based on the minimum

vehicle load. The cost of the basic structure is calculated
and expressed as a ratio or percentage of the total cost
of the actual structure. This is repeated for each loading
level (after each load increment). A plot of the ratios
(i.e., cost factors and the load increments) is developed
and a statistical relationship or model between these
two parameters is established using regression. The cost
factor for any loading level can then be determined
using the regression model. This method requires
considerably less design effort compared with the other
methods and minimal loss of accuracy. The Maryland
study (154) also used this method.

For the heuristic method, cost allocation is carried
out using established relationships between bridge cost
and standard structural performance. For example, in
order to link bridge cost to maximum moment, the
relationship between the cost factor (as defined above
for the semi-statistical method) and the moment may be
assumed to follow some mathematical relationship.
Cost factors from other states may be used, because
bridge designs are standardized and thus exhibit little or
no variations in the overall bridge cost analysis across
states for the same bridge size, material, type, dimen-
sions and functionality.

9.3 Life-Cycle Cost Analysis

For costing of bridge construction, rehabilitation
and maintenance, most state agencies prefer using the
actual expenditures incurred instead of the needed or
optimal expenditure (150). For example, the 1997
FHWA study (153) used past expenditures on bridge
construction, replacement, and major and minor
rehabilitation to allocate costs to highway users
(vehicles). It can be argued that using actual expendi-
tures for cost allocation yields underestimates of the
true cost required to maintain the bridge infrastructure
because, in practice, agencies make infrastructure
decisions based on budgetary constraints and thus only
invest in bridge projects that are identified as critical or
high priority. This leads to the deferment of other
bridge projects that are deserving of same action but do
not make the priority list.

As such, for the present study, the costing was
carried out on the basis of the funding needed to keep
the bridges in acceptable condition rather than the past
expenditures. This was done using life-cycle cost
analysis (LCCA), a tool that facilitates bridge manage-
ment decisions. The LCCA methodology is discussed in
Chapter 10.

9.4 Past Studies Related to Bridge Damage Cost
Estimation

9.4.1 The 1997 Federal Bridge Cost Allocation Study
(153,160)

For the federal bridge cost allocation study, the costs
were categorized as follows: new bridge, bridge
replacement, and major and minor bridge rehabilita-

119Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/01



tion. In each category, the costs were clustered into four
work classes: preliminary engineering, right-of-way,
construction, and other. Approximately 50% and 25%

of all the bridge costs were for bridge replacement and
major rehabilitation, respectively.

For new bridges, there was a substantial improvement
in the cost allocation procedure compared to the 1982
federal HCA approach. The basic principles, however,
remained the same. In the 1997 federal HCA study,
bridge design procedures were used to develop the
relationships between vehicle size and weight on one
hand and the costs associated with ensuring that the
bridge is competent enough to safely accommodate the
vehicle fleet on the other hand. The improved approach
addresses some of the major shortcomings of the 1982
federal HCA study, particularly, the simplifying assump-
tions underlying the approach. The major differences are
summarized in Table 9.3. In the present study, bridge
replacement, not new bridge construction, is of interest
because the focus on cost of damage repair and not
provision of capacity. For the same reason, bridge
widening costs were excluded in the present study.

In the 1997 study, simple spans and continuously-
supported spans were considered separately.
Furthermore, live load moments were calculated for
each vehicle class/weight group, each functional high-
way class (based on the mean length of the primary
span), and each bridge support type (simple and
continuous). In the 1982 federal HCA study, vehicles
were aggregated into fewer groups; all bridges were
assumed to be simply-supported; all single-unit trucks
were assumed to be a simple point load; and all
combination trucks were assumed to produce a
moment that was a simple multiple of the moment
produced by single-unit trucks. In the 1982 study,
vehicles that produce moments similar to HS15 to
HS20 design vehicles were placed into the same group.
This resulted in the situation where several medium-
weight vehicles along with the ‘‘heaviest’’ trucks were
assigned responsibility for the highest design increment.
In the 1997 study, the number of design/cost increments
was increased from 8 to 10 (see Table 9.2).

The cost allocation procedure for new bridges
follows the bridge design process. Bridges are designed

TABLE 9.3
Structures’ Cost Allocation: Summary of Improvements (153)

Item 1982 Study 1997 Study Comments

Number of cost categories New construction New construction 1982: based on PR-37

Replacement

Repair

Replacement

Major rehabilitation

Other

1997: FHWA implemented a more

detailed system (FMIS) that added

the ‘‘other’’ bridge cost category

Number of design/cost

increments

(H5, H10, HS15, etc.)

8 10 The addition of a design/cost

increment (HS 18), especially at the

upper (HS 15 to HS 20) end,

greatly increases the overestimation

of cost responsibility for the heavier

trucks

Inter-increment allocator Relative crude

approximations

using GVW

Live-load moment This is the most important

improvement in the 1997 bridge

cost allocation process

The inter-increment

allocator (the

assignment of vehicle

groups to the different

design/cost increments

were a function of

Span length No Yes Span length is the single most

important bridge characteristic in

determining live-load moment

Functional class No Yes This is important because bridge span

lengths vary significantly for

different functional classes

Axle loads Only when aggregated

as GVW

Yes Axle loads and spacings for all vehicle

classes and weight groups were used

to compute the live-load momentsAxle spacings No Yes

Bridge type No Yes Because of the impact of

superstructure type on live load

moments, live load moments for

both simple and continuous bridge

types were computed

Bridge replacement National Bridge

Inventory (NBI)

sufficiency rating

Bridge needs and

investment process

(BNIP)

The BNIP determined which bridges

required replacement and the

extent to which the replacement

was load related
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to withstand the dead load (the bridge weight) and the
live load of the ‘‘heaviest’’ trucks, plus a safety factor. It
must be noted that the heaviest vehicles do not cause an
immediate collapse of the bridge but reduces the service
life of the bridge structure because of fatigue stresses
(159). Although the high safety factors used in bridge
designs compensates for fatigue impacts, it is critical to
monitor these bridges periodically along routes desig-
nated for heavy trucks (161). Any increase in the size
and load of the heaviest vehicle will require a
corresponding increase in the bridge size or strength.
The procedure relates the additional costs necessary to
make the bridge incrementally stronger to the set of
vehicles that occasion these higher costs.

The bridges in the 1997 FHWA study (153) were
grouped by highway functional class. For each
representative bridge, the allocation was carried out
by comparing the live load moments of each vehicle
class and weight group to the moment produced by the
design vehicle. This comparison allows each vehicle
class and weight group to be placed in a specific design
increment category, on the basis of whether its live load
moment is less than or equal to that of the design
vehicle.

The allocation of bridge replacement costs uses the
incremental methodology described earlier. The per-
centage of replacement costs assigned to the design

increments was estimated using the bridge needs and
investment process model (BNIP), the same model used
in estimating bridge investment requirements for an
agency’s condition and performance report.

The process for allocating major rehabilitation costs
was similar to that for replacement costs but more
complex because each of thirteen (13) rehabilitation
types were considered, these included rehabilitation of
the bridge deck, superstructure, or substructure, or
some combination of the three. With regard to bridge
replacement, a certain percentage of the cost was
assigned to different vehicle categories. For new bridge
costs, vehicle miles traveled (VMT) was used as the
basis for cost allocation.

Also in the FHWA study, minor bridge rehabilita-
tion and repairs were generally not related to vehicle
characteristics. All costs were assigned to the base
increment using VMT as the allocator. Figure 9.2
summarizes the allocation of bridge costs to vehicle
categories. It can been seen from Figure 9.2 that, over
59 percent of bridge costs were allocated to passenger
vehicles, 9.5 percent to single unit trucks, and over 21
percent to combination trucks.

In the FHWA study (153), bridge cost responsibil-
ities for the vehicle classes were determined on the basis
of operating weights (Table 9.4) and expressed in cents
per mile. The cost per mile seemed to be rather high

Figure 9.2 Federal bridge cost responsibility (%) by vehicle class (153).
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for heavy vehicles in each class due to the incremental
nature of the cost allocation process. The incremental
method assigns the cost of providing the last
increments of bridge strength only to vehicles that
produce the greatest moments; and heavy vehicles
typically account for a relatively small amount of
total miles of travel. For these two reasons, their cost
responsibility per mile is relatively high. Vehicle class
categories used for the federal HCA study are
presented in Table 9.5.

9.4.2 Indiana Bridge Cost Allocation Study (162,163)

The modified incremental method was used in
Indiana’s 1986 HCAS and its 1988 update. The classic

incremental methodology was modified at various
stages of the allocation process prior to its use in that
study. In the study, a group of bridges, representative
of the majority of bridges in the state, were selected
for the base period. A basic bridge structure was
designed with minimum design load. The next step
involved a set of designs. These designs were carried
out for each bridge structure with additional loading
increments up to the design load. The increments were
established on the basis of the vehicle classifications
which were correlated with the AASHTO design
loadings. Such correlation was necessary because the
vehicles on the road are different from the design
vehicles whose loadings are used in bridge design
specifications.

TABLE 9.5
Vehicle Class Categories in the 1997 FHWA Study (153)

Vehicle Class Notation Description

1 AUTO Automobiles and motorcycles

2 LT4 Light trucks with 2 axles and 4 tires (pickup trucks, vans, minivans, etc.)

3 SU2 Single-unit, 2 axle, 6 tire trucks (includes SU2 pulling a utility trailer)

4 SU3 Single-unit, 3axle trucks (includes SU3 pulling a utility trailer)

5 SU4+ Single-unit trucks with 4 or more axles (includes SU4+ pulling a utility trailer)

6 CS3 Tractor-semitrailer combinations with 3 axles

7 CS4 Tractor-semitrailer combinations with 4 axles

8 CS5T Tractor-semitrailer combinations with 5 axles, 2 rear tandem axles

9 CS5S Tractor-semitrailer combinations with 5 axles, 2 split (.8) rear axles

10 CS6+ Tractor-semitrailer combinations with 6 or more axles

11 CS7+ Tractor-semitrailer combinations with 7 or more axles

12 CT34 Truck-trailers combinations with 3 or 4 axles

13 CT5 Truck-trailers combinations with 5 axles

14 CT6+ Truck-trailers combinations with 6 or more axles

15 DS5 Tractor-double semitrailer combinations with 5 axles

16 DS6 Tractor-double semitrailer combinations with 6 axles

17 DS7 Tractor-double semitrailer combinations with 7 axles

18 DS8+ Tractor-double semitrailer combinations with 8 or more axles

19 TRPL Tractor-triple semitrailer or truck-double semitrailer combinations

20 BUS Buses (all types)

TABLE 9.4
Bridge Cost Responsibilities (Cents Per Mile) Estimated by the 1997 FHWA Study (153)

Operating Weight (lbs) SU2 SU3 CS5 CS6 DS5 DS8

0–10,000 0.1

10,000–20,000 0.2 0.2 0.2 0.2 0.2

20,000–30,000 0.2 0.2 0.2 0.2 0.2 0.2

30,000–40,000 0.7 0.6 0.2 0.2 0.3 0.2

40,000–50,000 2.4 1.7 0.3 0.3 0.3 0.2

50,000–60,000 4.5 4.3 0.4 0.3 0.3 0.3

60,000–70,000 — 19.1 0.6 0.6 0.4 0.3

70,000–80,000 — 23.9 1.2 0.9 0.7 0.4

80,000–90,000 — — 2.1 2.4 1.4 0.8

90,000–100,000 — — 4.4 5.5 2.3 1.3

100,000–110,000 — — 12.1 13.1 — 1.8

110,000–120,000 — — — 21.9 3.1

120,000–130,000 — — — — — 7.7

130,000–140,000 — — — — — 8.1

140,000–150,000 — — — — — 16.5

NOTE: See Table 9.5 for vehicle class category definitions.
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The basic procedures developed by Sinha et al.
(162,163) for the bridge cost allocation is as follows:

N The correspondence factors needed to correlate FHWA
standard vehicle classifications to AASHTO design
vehicle loads.

N A group of representative bridge structures were selected
from the design records.

N For each bridge type, an incremental design of the bridge
structure was carried out for each AASHTO vehicle
design load. The design followed the relevant AASHTO
specifications and the recommended bridge design
practices of INDOT.

N The bridge cost data for the base period were established
using historical records of bridge designs and bids.

N The unit cost of each major structural component was
established using the contract bid records in the base
period. The next step involved cost estimation for each
incremental bridge design.

N The total cost responsibility of each vehicle class was
then evaluated using individual cost factors.

9.4.3 Oregon Bridge Cost Allocation Study (152)

In Oregon, the incremental method was used directly
in the allocation of bridge costs. The base design for a
new bridge was one designed to support its own weight
and to withstand non-load-related stresses and light
traffic. Specifically, the factors influencing the design
requirements, and therefore the bridge costs, were
expressed in terms of the dead loads and live loads. The
dead loads included the self-weight of the bridge and
the other, non-load-related forces such as stream flow,
wind, and seismic forces. The anticipated traffic
loadings, on the other hand, were classified as live
loads. The total design load is the sum of dead and live
loads. Although the precise relationships differ by the
type and location of the bridge under consideration, as
a general rule, the longer the span length, the greater
the relative importance of the non-load-related factors
in determining the total cost of the bridge. The non-
load cost is a common responsibility of all vehicles and
was assigned to each class on the basis of the VMT
share of the class.

The next step was an increment that identified the
additional cost of constructing the bridge to accom-
modate heavy vehicles. This cost was assigned to all
vehicles with gross weight exceeding 10,000 pounds on
the basis of the relative VMT of each class of vehicles
over 10,000 pounds. Similarly, the additional cost of the
third increment was assigned to all vehicles with gross
weight exceeding 50,000 pounds, and the cost of the
fourth and final increment was assigned to vehicles
having gross weights over 80,000 pounds.

The costs used in the allocation process could be
expenditures from a past period, those anticipated
for a future period, or a combination of past and
future costs. The Oregon HCAS has traditionally
used a prospective approach in which the expendi-
tures allocated were those planned for a future
period, specifically, the next fiscal biennium. The

traffic data used in the study were projected for the
future year.

The practice of using projected future expenditures
has some drawbacks. First, it requires relying heavily
on forecasts that are subject to large deviations from
historical expenditures. Secondly, it does not address
issues related to facilities with useful lives longer than
the two-year study period. The Oregon study allocates
expenditures rather than costs, which has its draw-
backs as well. In the long run, expenditures may cover
the full direct costs being imposed on the system or the
system will deteriorate; but in the short run, however,
expenditures may exceed or fall short of the costs
imposed. The bridge cost responsibility by vehicle
class presented in the Oregon study, is shown in
Figure 9.3.

9.4.4 Nevada Highway Cost Allocation Study (164)

The bridge cost allocation procedure used in the 2009
Nevada HCAS was based on methods developed by
FHWA for the 1982 and 1997 federal HCAS. For
expenditures, three categories of bridge repair were
considered: new bridge construction, bridge replace-
ment, and bridge rehabilitation.

New bridge construction expenditures were allo-
cated on the basis of an incremental analysis of the
cost of construction using different design loadings.
These loadings were based on hypothetical vehicles,
and the resulting stresses in the load-bearing members
of bridges were calculated and compared with
permissible stress levels. As loadings were increased
systematically the corresponding dimensions of the
bridge members (and, consequently, the bridge con-
struction costs) became larger. The base situation was
associated with the lightest design loadings and all
vehicles shared this cost. Thus, the determination of
the vehicle classes that share the costs of each
increment were established by comparing the stresses
produced by the vehicles with the stresses imposed by
the design loadings.

Bridge replacement expenditures in the Nevada study
were allocated on the basis of the percentage of
estimates of the expenditures that were incurred in a
case where the load-bearing capacity of an existing
bridge was deficient. These expenditures were allocated
to vehicles that operated at weights that exceed the
load-bearing capacities of the replaced bridges. The
percentage of bridge replacement costs that were
incurred as a result of deficient load-bearing capacities
was estimated using FHWA’s bridge sufficiency rating
formula. Under the formula, bridges lose points for
inadequate load-bearing capacity or for exhibiting signs
of non-load-related distress such as pier scouring or
narrow lanes.

Bridge rehabilitation expenditures were allocated on
the basis of the estimates of the fraction of the costs of
bridge rehabilitation types and the extent to which the
expenditures of each type were load related. The
allocation was based on information from FHWA’s
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bridge needs and investment process. The primary
input required was an analysis of a representative
sample of bridge repair projects to determine the overall
percentage of such projected costs that were expected to
be load related and those expected to be non-load
related. This split, broken down by road functional
class, was then used to determine the split between (i)
costs that should be allocated by the VMT broken

down by the vehicle weight category and (ii) costs that
should be allocated only by VMT for each vehicle class.
The bridge cost responsibility by vehicle class is shown
in Figure 9.4. As shown in the figure, the Nevada study
suggested that approximately 40% of the bridge costs
are attributable to passenger vehicles, approximately
6% to single-unit trucks, and approximately 52% to
combination trucks.

Figure 9.4 Bridge Cost Responsibility (%) by Vehicle Class in Nevada (164).

Figure 9.3 Oregon bridge cost responsibility (%) by vehicle class (152).
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10. DEVELOPMENT OF METHODOLOGY FOR
ESTIMATING BRIDGE DAMAGE COSTS

10.1 Introduction

This chapter discusses the elements of the methodol-
ogy used to determine the bridge damage cost in this
research. These include bridge classification by material
highway class, material type and age, bridge activity
profile, and selection of representative bridges. The
definition of an overweight truck and how overweight
truck traffic volume is estimated are then discussed. The
chapter also includes the correlation of the AASHTO
vehicle classification to the FHWA vehicle classification
by weight and vehicle configuration, which is a critical
part of methodology. In order to facilitate the correla-
tion, a statistical model was developed, and a systema-
tic approach for the incremental cost analysis, is
discussed. The methodology is subsequently applied in
Chapter 12 for allocating bridge cost to overweight
trucks.

10.2 Highway Classification

Bridges on high-speed and high-volume roads such
as Interstates have higher design standards compared to
low-volume roads. In the present study, the selected
bridges were located along ‘‘national truck routes.’’ The
bridges on routes designated as national truck networks
were used because overweight trucks are allowed only
on bridges designed for trucks. Therefore, the design
live loads on these bridges did not differ significantly
from each other. Specifically, all the bridges analyzed in
the present study had a design live load of HS20 or
above. In order to facilitate the estimation of bridge
costs by highway type, the following highway bridge
classifications were used: Interstate highway bridges,
NHS non-Interstate highway bridges and non-NHS
highway bridges.

10.3 Bridge Classification and Activity Profile

Bridges on routes often used by trucks are con-
structed predominantly using steel or concrete
(165,166). The distribution of bridges by material type
is discussed in the next section. The activity profiles for
the bridge types do not differ significantly from each
other. For example, using the Indiana bridge manage-
ment software (167) developed for the state of Indiana,
the life cycle are: steel bridges, 70–80 years; concrete
bridges, 35–70 years; and prestressed bridges, 50–70
years. The life-cycle range depends on the super-
structure design or construction which can be classified
as slab; stringer/multi-beam or girder; girder and floor
beam system; tee beam; box-beam or girders-multiple;
box-beam or girders-single or spread; frame (except box
culverts); truss deck; truss-thru; arch-deck; culvert
(includes frame culverts); channel beam. For the
purpose of the present study, the upper boundary of
bridge life range was used for the analysis. The selected
activity profiles for the different bridge types used in the

study are shown in Figures 10.1 and 10.2. From the
figures, it can be observed that the activity profiles do
not vary significantly. Therefore, in the present study,
all three bridge material types were considered as
having the same activity profile. Bridges constructed
using these materials constitute over 80% of all bridges
(165–167). The life cycle adopted in the present study
was bridge replacement in years 0 and 70, deck
rehabilitation in years 20 and 55, and superstructure
replacement in year 35 with annual routine mainte-
nance.

10.4 Selection of Bridges

The bridges used for the present study were Indiana
state highway bridges selected from the national bridge
inventory (NBI) database (165,166). The bridges on
routes designated as national truck networks were used
because overweight trucks are allowed only on bridges
designed for trucks. In order to establish the bridge cost
due to overweight truck operations at any specific
bridge, the bridges were clustered into groups with
similar characteristics including highway class, bridge
material type, and bridge age (Table 10.1).

The distribution of bridges by highway class
(Figure 10.3) shows that out of 3,128 bridges on the
national truck network in Indiana, approximately 45%

are located on Interstates, approximately 29% on NHS-
non-Interstates, and 25% on non-NHS highways.

In order to differentiate between bridges by material
type for each highway class, the bridges were grouped
as follows: steel, reinforced concrete, and prestressed
concrete. Approximately 49% of bridges are steel,
31.7% are reinforced concrete, and 19.5% are pre-
stressed concrete (Figure 10.4).

The age of a bridge influences the specific decision
for bridge action (deck replacement or rehabilitation,
superstructure replacement, or bridge replacement). To
quantify the effect of bridge age on the total bridge cost
associated with overweight truck operations, the
bridges in this study were further clustered into four
age groups based on the bridge life-cycle activity profile
(Table 10.1). For each age group, the midpoint was
used to represent that age group.

The distribution of bridges by age group (Figure 10.5)
shows that approximately 56% of the bridges are 20 years
or less in age and one percent are between 55 to 70 years in
age.

Figure 10.1 Activity profile for steel bridges (not to scale)
(167).
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10.5 Overweight Truck Volume Estimation

In Indiana, the legal load limit is 80,000 lbs.
Therefore, in the present study, an overweight vehicle
is generally considered as any vehicle with an overall
weight exceeding 80,000 lbs.

In incremental analysis, it is critical to estimate the
expected number of overweight trucks. Data on over-
weight truck volumes across the highways in Indiana by
vehicle weights were not available for this study.
However, an overweight truck permit revenue database
indicating the number of overweight trucks by axle
spacing and axle load for the months of March and
April 2011 was made available by INDOT for the
present study. Using the permit revenue data, the
overweight truck distribution by gross vehicle weight,
axle spacing, and axle load were established
(Figure 10.6 and Table 10.2). From the figure and
table, it can be observed that overweight vehicles of
weight 108,001–150,000 lbs represented approximately
47% of all overweight vehicles, and approximately 3%

were overweight vehicles above 200,000 lbs. It should be
noted that not all overweight vehicle operators perform
their civic responsibilities to acquire a permit. Thus, the
assumption here is that the distribution of all overweight
vehicle weights (which is unknown) is similar to the
weight distribution of overweight vehicles that acquire
permits (which is known).

As stated in the previous paragraph, a projection of
the two-month permit revenue count data over the

entire year and also over the entire bridge life cycle will
likely result in underestimating the volume of over-
weight trucks on the highways. This is because a
significant number of overweight vehicles operate on
the highways without prior acquisition of a permit
(168,169). For example, the Bullock et al. study (169)
verified the weights of trucks along urban Interstate I-
65 at milepost 253.62 (Merrillville, Indiana) to enable
effective police deployment towards overweight truck
enforcement and concluded that the percentage of
overweight trucks at that location ranged from 13.8%
to 22.5%. The study did not indicate the percentage of
these overweight trucks that were operating without
permit. In order to estimate the approximate volume of
overweight trucks in Indiana for the present study,
combination truck data from FHWA (170) were used.

The combination truck data can be used to estimate
the approximate volume of overweight trucks because
all combination trucks are considered to be within
FHWA’s vehicle classes 8 to 13 which can be described
as ‘‘operating as overweight trucks.’’ This approach
estimated the overweight truck volume based on the
combination truck VMT in Indiana. The procedure
used for estimating the overweight truck volume is
presented below.

1. Determine the total vehicle miles of travel on all
Interstates in Indiana, using recent published data for
2010 from FHWA (170).

2. Determine the Interstate miles available based on recent
data from FHWA (170).

3. Compute the Interstate annual traffic volume by dividing
Interstate VMT by Interstate miles.

4. Calculate the Interstate annual combination truck
volume by multiplying Interstate annual traffic volume
by the percentage of combination trucks on Interstates
from Table 10.3.

5. Compute the annual overweight truck volume for year
2010 by multiplying the combination truck annual
volume found in part (d) above by 13.8% as established
by Bullock et al. (169) because using the average value
can result in over-estimating the volume of overweight
trucks as determined by those researchers.

6. Project the 2010 combination truck volume to 70 years
(length of the bridge life cycle) with a growth factor of
1.5%. This growth factor was based on the average

Figure 10.2 Concrete and prestressed concrete bridge activity
profile (not to scale) (167). Where, BR: bridge replacement
(reconstruction), RM: bridge routine maintenance, DR: deck
replacement or rehabilitation; SR: superstructure replacement.

TABLE 10.1
Placing the Bridges into Families

Highway Class Bridge Material Type

Age Group (years)

0–20 20–35 35–55 55–70

Interstate Steel ! ! ! !
Reinforced concrete ! ! ! !
Prestressed concrete ! ! ! !

NHS non-Interstate Steel ! ! ! !
Reinforced concrete ! ! ! !
Prestressed concrete ! ! ! !

Non-NHS Steel ! ! ! !
Reinforced concrete ! ! ! !
Prestressed concrete ! ! ! !
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Figure 10.4 Distribution of bridges by bridge material type.

Figure 10.3 Distribution of bridges by highway class.
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Figure 10.5 Distribution of bridges by age group.

Figure 10.6 Distribution of overweight trucks.
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growth of combination trucks in Indiana over the past
five years.

7. Distribute the overweight trucks by type, using the
information presented in Table 10.2.

8. Compute the overweight truck volumes for the remaining
highway types (NHS non-Interstate, and non-NHS)
based on the percentage distribution of combination
trucks on each of the three highway classes (Table 3.3).

10.6 Linking AASHTO Design Vehicles to FHWA
Vehicles

AASHTO design vehicles are used in bridge designs
to simulate the most severe live loads on a given bridge.
However, these vehicles are not those observed operat-
ing on the roads. In order to assign the cost increment
to each vehicle weight group, a quantitative correlation

between the AASHTO design vehicles and the FHWA
vehicles operating on the highway must be established
(159). Such correlation is critical in the alloca-
tion framework because inappropriate matching will
result in significant errors in the allocation process.
Specifically, the accuracy of the cost functions in terms
of design loadings would not be reliable when
converted into the FHWA vehicle classes. In the past,
some studies (153,155,160) used gross vehicle weights
(GVW) to establish the correlation between these two
parameters. That approach assumes a very simple
relationship between the observed FHWA vehicle
weight groups and the design vehicle weight groups.
This assumption is not compatible with bridge design
because the analysis in the approach does not consider
axle spacing and axle-load distribution which are
important in bridge design.

In another study, conducted in Maryland (154) axle-
load spacing and axle-load distribution were consid-
ered; however, that analysis was limited to simply-
supported single-span bridges. The results from that
analysis which used simply-supported single-span
bridges can be expected to yield significant error when
it is extended to bridges with continuous spans. To
overcome this challenge, this study used the equivalent
load approach proposed by Tee et al. (159). This
approach relates the amount of moment produced by
AASHTO design vehicles to that of FHWA vehicles.
Tee et al. (159) found that Smoments produced depend
on the axle spacing, the axle-load distribution of the
vehicles, and the bridge span type (simple or contin-
uous). Adopting the equivalent load approach will
require significant computational time and specialized
knowledge of bridge design.

In order to reduce computational time and also
create a model that asset managers can easily use
without having bridge design expertise, the modified
equivalent vehicle model was developed for the present
study. The flowchart for the model is shown in
Figure 10.7. Seven key steps were used to develop the
modified equivalent vehicle model approach.

The first step of the developed methodology involved
the computation of the critical or maximum moments

TABLE 10.3
Percentages of Combination Trucks by Highway Type

Description Highway Class

Combination Truck (%) in Year:

2-Year Average2009 2010

Rural Interstate 30.6 30.40 30.5

NHS-NI 12.3 12.5 12.4

N-NHS 3.8 4.50 4.15

Urban Interstate 22.5 22.50 22.5

NHS-NI 7.4 7.40 7.4

N-NHS 1.3 1.70 1.5

Average (rural & urban) Interstate 26.55 26.45 26.5

NHS-NI 9.85 9.95 9.9

N-NHS 2.55 3.10 2.83

Source: Developed using data from FHWA (170).

TABLE 10.2
Distribution of Overweight Trucks

Weight Group Truck Description Percentage by Volume

80–108kips 4 axles 2.58

5 axles 12.71

6 axles 17.32

7 or more axles 7.88

108–150kips 4 axles 0.40

5 axles 0.62

6 axles 18.83

7 axles 17.87

8 axles 3.72

9 or more axles 5.71

150–200kips 7 axles 2.91

8 axles 2.63

9 axles 0.73

10 axles 0.42

11 axles 0.45

12 or more axles 1.90

.200kips 11 axles 1.42

12 axles 0.39

13 axles 0.23

14 axles 0.24

15 or more axles 1.03

Source: INDOT (221).
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produced by overweight trucks by using the bridge.
This is based on the gross vehicle weight, axle loading,
and axle spacing of the truck. INDOT’s overweight
truck permit database was used to select overweight
trucks for the structural analysis. The second step is to
correlate the moment generated by the FHWA weight
group vehicles with AASHTO standard vehicles. For
doing this, the critical moments produced by AASHTO
standard vehicles HS15 and HS20 were determined. It
may be noted that HS20 is the design vehicle for the
bridges on the national truck network in Indiana. The
AASHTO standard vehicle configuration for HS trucks
is shown in Figure 10.8. The computed critical moments
for overweight trucks within each load interval are
shown in the Part III Appendix, Figure III.A.1.

In order to relate the AASHTO vehicle classification
to FHWA vehicle classification, it was needed to
establish the unit design critical moment. This is the
focus of the third step. The unit design (HS1) critical
moment was calculated from the critical moments
produced by AASHTO standard vehicles HS15 and
HS20 on the selected bridge as shown in Equation 10.1.

UDMHS1~
CMHS20{CMHS15

LHS20{LHS15

ð10:1Þ

Where:
UDMHS1: unit design critical moment (ft.),
CMHS20: computed critical moment produced by

load HS20,
CMHS15: computed critical moment produced by

load HS15, and
LHS20{LHS15: is 5, that is the numerical difference

between 20 and 15.
Step four establishes the difference between critical

moment of an FHWA vehicle and that of an HS20. The
critical moment produced by HS20 was used as the

baseline in the difference computation. In Step five,
each AASHTO code HSXY was correlated to each
FHWA weight group class. In Step six, a multivariate
non-linear regression was conducted using the gener-
ated data (38 observations) from steps one to five. For
the statistical analysis, an initial set of independent
variables were explored, including the minimum axle
load, maximum axle load, average axle load, gross
vehicle weight, bridge material type, and minimum axle
spacing and maximum axle spacing. However, only
three independent variables were found to be statisti-
cally significant in estimating the modified equivalent
vehicle model (AASHTO design vehicle) as shown in
Table 10.4: the gross vehicle weight (GVW) in pounds,
the average axle spacing (AAS) in inches, and the
average axle load (AAL) in pounds. The three variables
were found to be statistically significant at the 99%
confidence level.

From the results in Table 10.4, it can be seen that
an increase in the GVW increased the equivalent
vehicle load. Secondly, an increase in the axle spacing
decreased the imposed load on the bridge structure,
hence decreasing the equivalent vehicle load. This result
is intuitive because from a general standpoint, the wider
the spacing between axles, the lower the bridge damage.
Finally, an increase in average axle loading per axle
increased the AASHTO design vehicle class, which
means that increasing the load on each axle increased
the damage caused by that vehicle, thereby increasing
the equivalent vehicle load. The final step presents the
modified equivalent vehicle model (Equation 10.2).

MEV~a
GVW

AAS

� 	b

|AALc ð10:2Þ

Where: MEV: modified equivalent-vehicle (AASHTO
loading in HS),

Figure 10.7 The modified equivalent-vehicle (MEV) methodology developed in this study.
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GVW: gross vehicle weight (lbs), AAS: average axle
spacing (in), and

AAL: average axle load (lbs).

For example, an overweight truck with a GVW of
120,000 lbs, average axle spacing of 112 inches, and

average axle load of 23,000 lbs was classified as HS 31
based on the model,

MEV~0:0057
120000

112

� 	0:313

|230000:64~31:3:

Thus, the truck falls in the HS31 group (see
Figure III.A.7 in the Part III Appendix).

10.7 Methodology for Bridge Damage Repair Cost
Estimation

The input variables for estimating the bridge repair cost
include highway type, bridge material type, bridge length,
bridge deck width, bridge age group, equivalent uniform
average annual traffic volumes, and bridge life-cycle cost

Figure 10.8 The AASHTO HS standard truck (158).

TABLE 10.4
Statistical Results for Modified Equivalent Vehicle Model

Parameter Coefficient t-Statistic Adjusted R2

a 0.0057 2.121

b 0.3130 6.804 0.923

c 0.6400 4.211

Where, a,b,c are estimated parameters.
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per unit of bridge length. The methodology used in the
present study is summarized in Figure 10.9 and the
detailed computational steps are outlined below:

1. Select a highway class (Interstate, NHS non-Interstate,

NNHS).

2. Select a bridge by material type (steel, pre-stressed

concrete, concrete).

3. Select the bridge age group (0–20; 21–35; 36–55; 55–70).

4. Establish the unit cost for each bridge element (super-

structure, substructure, approach, and other relevant

elements). Note that unit cost is in 2010 constant dollars

to facilitate adjustments due to inflation.

5. Compute the partial life-cycle cost for all relevant

activities scheduled for the bridge over its remaining life,

based on the unit cost established in step (d). Note that the

partial life-cycle cost is the present worth cost of the

relevant activities for a bridge due to its age. For example,

the partial life-cycle cost of a bridge in the age group 21-35

will include superstructure replacement cost, deck rehabi-

litation cost, and bridge replacement cost. Using a

numerical example for the above illustration, if the present

worth costs for superstructure replacement, deck rehabi-

litation and bridge replacement are $750,250; $85,620; and

$1,304,767 respectively, then the partial cost will be the

summation of the present worth costs ($2,140,637).

6. Compute bridge full life-cycle cost. This can be calculated

as the present worth cost of all the different activities

expected on the bridge during its complete life cycle. The

formulation is discussed later in Chapter 11 (equation

11.1). For illustrative purposes, consider a bridge with

the following costs (constant dollar): bridge reconstruc-

tion 5 $2,671,912 (r%, 0 yrs); deck rehabilitation in year

20 is $316,211 (r%, 20 yrs), deck replacement in year 35 is

$225,015 (r%, 35 yrs), deck rehabilitation in year 55 is

$112,376 (r%, 55 yrs). Therefore, the present worth of the

bridge full life-cycle cost is $3,325,516.

7. Compute the bridge life-cycle cost in perpetuity. This is

the sum of the partial life-cycle cost and cost of all full

life cycles to perpetuity. Convert the life-cycle cost into

the equivalent annualized uniform cost (EUAC). The

formulation is discussed later in Chapter 11 (equation

11.4). Using the partial present worth of all life-cycle cost

(partial and full) is $5,803,608,000 then the EUAC over

the 70-year cycle is $199,276 as computed below:

EUAC~5,803,608,000
0:03 1z0:03ð Þ70

1z0:03ð Þ70
{1

" #

~$199,276,000

8. Convert the EUAC life-cycle cost into the EUAC per bridge

length. In order to use representative bridge dimensions, the

weighted average length and deck width of the bridges were

computed. The weight for each bridge type was based on the

numberofbridgesinthatcategory.Thiswasdoneincognizance

of the variation in bridge lengths and widths in the database.

Notethatthecostscomputedfromsteps(f)to(g)werebasedon

aweightedbridgelength(224ft.)andaweighteddeckwidth(53

ft.).Theweightedbridge lengthanddeckwidthwerecomputed

as shown in Equations 10.3 and 10.4:

BLw~

Pn
d,m~1 wdmBLdmPn

d,m~1 wdm
ð10:3Þ

DWw~

Pn
d,m~1 wdmDWdmPn

d,m~1 wdm
ð10:4Þ

Where, BLw: weighted average bridge length (ft.),

DWw: weighted average bridge width (ft.),

Figure 10.9 Developed methodology for bridge cost allocation.
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BLdm: length of bridge by bridge age d and material

type m (ft.),
DWdm: bridge deck width by bridge age d and

material type m (ft.),
n: total number of bridges, and
wdm: weight of bridge by bridge age d and material

type m.
For illustrative purposes, assuming the annual

maintenance cost of ten percent of estimated EUAC
value in step (g), then the total EUAC will be
$219,204,000 and the weighted bridge length from step
(h) is 224ft, then EUAC per bridge length is approxi-
mately $979, 200 per ft. of bridge length.

9. Determine the percentage of bridge cost for each
AASHTO vehicle class using Table 10.5.

10. Compute the cost increment for each loading increment
using Equation 10.5.

CIp,m~TCm| CFp,m{CFp{1,m

� �
ð10:5Þ

Where,
CIp,m: cost increment of AASHTO vehicle class r and

bridge material type m
TCm: total cost of bridge material type m and

CFp,m: cost factor of AASHTO design vehicle r and

bridge material type m
The cost factor of the AASHTO design vehicle (with

MEV 35) p is (116.05) (calculated from Table 10.6) and
the cost factor of the AASHTO design vehicle p{1ð Þ
(with MEV 34) is 114.99 (calculated from Table 10.6).
Thus, the cost increment is:

CIp,m~979,200| 116:05%{114:99%ð Þ~$10,400

11. Compute overweight truck equivalent uniform annual
volume as described in Section 10.5. For numerical
illustration let us assume a total of 25,000 overweight
trucks.

12. Compute proportion of overweight truck type using
Equation 10.6.

PATVp~
ATVpPn

p~1 ATVp

ð10:6Þ

Where,
PATVp: proportion of annual truck volume for

AASHTO vehicle class p,
ATVp: annual truck volume for AASHTO vehicle

class p, and

n: number of overweight truck types.
For numerical illustration, let the number of

AASHTO vehicle class p be 993 in the total population
of 55,174 OW trucks (see step (k)), then PATVp~
993

55174
~0:018~1:8%:

13. Compute the incremental cost responsibility for each
AASHTO vehicle class using Equation 10.7.

CRp~CIp

PATVpPn
p~1 PATVp{

Pp{1
p~0 PATVp

ð10:7Þ

Where,
CRp: cost responsibility of AASHTO design vehicle

p, and
n: number of cost increments.
For illustrative purposes, the inputs and outputs

from previous steps served as inputs for step (m). In this
example, 87.63% of the volumes of OW are lighter in
weight as compared to truck HS35.

Therefore, the cost responsibility of HS35 is

CRHS35~10,400| 1:8
100{87:63

~$1,513:

14. Compute the total cost for each AASHTO design vehicle
by summing up the cost at each incremental level using
Equation 10.8:

TCp~
Xn

p~1

CRp ð10:8Þ

Where,
TCp: total cost responsibility of AASHTO design

vehicle p, and
n: number of cost increments.
The total cost for each AASHTO vehicle class will be

the summation of the repeated cost increments (step m).
For this example, 20 increments were carried out. The
summation of the other nineteen increments was
$7.907, then adding the increment in step m, the total
cost for AASHTO vehicle class p is TCp~7,907z

1,513~$9,421:

15. Compute cost per AASHTO vehicle class by using
Equation 10.9.

Cp~
TCp

PATVp|
Pn

p~1 ATVp

ð10:9Þ

Using inputs from the previous steps, CHS35~
9,421

0:018|55174
~$9:49. This corresponds to disaggre-

gate cost (option 1) for AASHTO design vehicle HS35
as can be seen in Figure III.A.4 (last row) in the Part III
Appendix.

16. Convert AASHTO vehicle class to FHWA vehicle class
using Equation 10.10 to establish the cost per overweight
truck, using FHWA vehicle classification.

TABLE 10.5
Estimation of Percentage of Bridge Cost for AASHTO Vehicle

Road Type % of Total Bridge Cost Model

Interstate 42:16z12:49
ffiffiffiffiffiffiffiffiffiffiffiffi
MEV
p

NHS non-Interstate 40:72z12:87
ffiffiffiffiffiffiffiffiffiffiffiffi
MEV
p

NNHS 49:20z11:61
ffiffiffiffiffiffiffiffiffiffiffiffi
MEV
p

Source: Revised from (159).
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MEV~0:0057
GVW

AAS

� 	0:313

|AAL0:64 ð10:10Þ

Assuming overweight truck has the following charac-
teristics: GVW 5 95,650 lbs, AAS 571 in, AAL 5

23,940 lbs and computing the expected MEV, the cost
responsibility can be assigned. On the basis of the truck
configuration the computed MEV will be

MEV~0:0057 95650
71

� �0:313
|239400:64~34:5&35:This

corresponds to AASHTO design vehicle class of HS 35.

10.8 Chapter Summary

This chapter discussed the components of the cost
allocation methodology used in this research.
Furthermore, the chapter presented the modified
equivalent vehicle (MEV) model used to correlate the
AASHTO vehicle classification to the FHWA vehicle
classification on the basis of the weight and vehicle
configuration. A methodology was developed in this
chapter to estimate bridge damage cost. Using this
result, the actual life-cycle cost estimation is carried out
in the next chapter (Chapter 11).

11. ESTIMATION OF BRIDGE LIFE-CYCLE COST

11.1 Introduction

The previous chapter presented an overall methodol-
ogy for bridge damage cost estimation. The present
chapter focuses on a key aspect of that methodology:
bridge life-cycle cost estimation. The life-cycle cost
approach was used in the present study in order to

estimate the relevant agency costs that the agency incurs
during the bridge life cycle. Specifically, the estimation of
the life-cycle cost of a bridge is a critical input in bridge
damage cost estimation because it specifies the schedule
of activities needed to keep the bridge at a minimum level
of performance over its life cycle. This chapter discusses
the procedure used to estimate bridge life-cycle cost and
how it was applied in the present study.

11.2 Estimation of Bridge Life-Cycle Cost

The bridge life-cycle cost for this study included the
relevant agency costs that are expected to occur
throughout the life of the bridge asset. The bridge life
cycle is considered as the time interval between two
consecutive bridge replacement activities (Figure 11.1).
The focus of the present study is on the cost incurred in
providing the bridge and the cost of repairing damage
due to traffic loading. For the purposes of the study,
bridge construction cost (new bridge where none existed
hitherto) was excluded but reconstruction (replace-
ment) cost of an existing bridge was included.

In order to recognize the fact that not all bridges in
the network are new, study considered the remaining
bridge life (referred to as a partial cycle in Figure 11.1).
The partial cycle time is the time interval between the
current year and the year of bridge replacement. Thus
two bridges of the same material type and same design
type are assumed herein to have the same full life-cycle
cost. However, if one of these bridges is new and the
other has existed for some years, then the former will
have no partial life-cycle cost while the latter will have a
partial cycle cost.

Figure 11.1 Illustration of partial and full cycles for a bridge.
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11.3 Selection of Cost Models and Average Unit Cost

The total cost associated with bridge provision and
upkeep over partial or full cycle is the sum of the
individual constituent costs of the MR&R schedule over
the full or partial cycle. These costs include (re)construc-
tion cost, deck and superstructure rehabilitation costs,
deck replacement costs, and maintenance costs. For
estimating these costs, data from Rodriguez (171) were
adjusted to 2010 dollars (Table 11.1) and used.

11.4 Life-Cycle Bridge Cost Analysis

In order to estimate the life-cycle cost, the schedule
of treatments for each bridge family was established.
Then, using the unit costs of the bridge treatments
established in Section 11.3, the total cost for each life-
cycle scenario, repeated until perpetuity was deter-
mined. The cost at each year was converted into present
worth as shown in Equations 11.1 to 11.3 and total cost
was determined as the sum of the full cycle present
worth and the partial cycle present worth. The EUAC
was then calculated by annualizing the ‘‘present worth
of the total costs’’ in perpetuity.

In the present study, steel, prestressed concrete and
concrete bridges were each assigned a 70-year life cycle.
The choice of 70 years was based on the average life
expectancies of these bridge types as indicated by Sinha
et al. (167).

PWFC,m~PWBR,mzDrehab1,m
1

1zrð Þ20

" #
z

Dreplace,m
1

1zrð Þ35

" #
zDrehab2,m

1

1zrð Þ55

" #
z

BRreplace,m
1

1zrð Þ70

" #
ð11:1Þ

PWPC,m~Drehab1,m~
1

1zrð Þ20{h

" #
z

Dreplace,m
1

1zrð Þ35{h

" #
zDrehab2,m

1

1zrð Þ55{h

" #
z

BRreplace,m
1

1zrð Þ70{h

" #
ð11:2Þ

PWTC,m~PWPC,mzPWFC,m ð11:3Þ

EUACm~PWTC,m
r 1zrð Þn

1zrð Þn{1

� �
ð11:4Þ

Where,

TABLE 11.1
Average Unit Cost and Cost Model Used in Bridge Expenditure Analysis

Superstructure Type Cost Component Unit Cost ($/ft2) Cost Model

Steel bridges SUPRC 70.26 N/A

SUBRC 21.23 N/A

APPRC 69.87 N/A

OTHC 55.95 N/A

DERC N/A 0:167|BL0:662|TDW 0:949z16:752|SKEWz1:24|DA0:525

Prestressed concrete bridges SUPRC 57.47 N/A

SUBRC 20.56 N/A

APPRC 87.89 N/A

OTHC 68.30 N/A

DERC N/A 0:167|BL0:662|TDW 0:949z16:752|SKEWz1:24|DA0:525

Reinforced concrete bridges SUPRC 53.33 N/A

SUBRC 20.16 N/A

APPRC 90.66 N/A

OTHC 60.91 N/A

DERC N/A 0:167|BL0:662|TDW 0:949z16:752|SKEWz1:24|DA0:525

Source: (171).

SUPRC: superstructure replacement cost, in 1,000s of year 2010 constant dollars.

SUBRC: substructure replacement cost, in 1,000s of year 2010 constant dollars.

APPRC: approach replacement cost, in 1,000s of year 2010 constant dollars.

OTHRC: other replacement cost, in 1,000s of year 2010 constant dollars.

DERC: deck rehabilitation cost, in 1,000s of year 2010 constant dollars.

BL: bridge length (in ft.).

TDW: total deck width (in ft.).

SKEW: bridge skewness (degrees).

N/A: not applicable.
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PWFC,m: present worth of all treatment costs over full

cycle for bridge family m,

PWPC,m: present worth of all treatment costs over

partial cycle for bridge family m,

PWTC,m: present worth of all life-cycle costs for

bridge family m,

PWBR,m: present worth cost of bridge (re) construc-

tion for bridge family m,

Drehab1,m: cost of first deck rehabilitation for bridge

familym,

Dreplace,m: deck replacement cost for bridge family m,

Drehab2,m: cost of second deck rehabilitation for bridge

family m,

BRreplace,m: bridge replacement cost for bridge family m,

EUACm: bridge equivalent uniform annual cost for

bridge family m,

r: discount rate, and

h: age of bridge.

11.5 Estimate Life-Cycle Costs of Bridges in the Study

Using the analysis presented in Section 11.4, the life-
cycle cost for each bridge family was calculated on the
basis of representative bridges within each of the groups
discussed in Chapter 10. The life-cycle cost for each
bridge family was calculated using the bridge compo-
nent cost models presented in Table 11.1. The EUAC
for each bridge family, bridge age and highway
functional class is presented in Table 11.2. The results
presented in Table 11.2 are the costs per unit bridge
length. It is worth iterating that the lifecycle activity
profile being used in these calculations is that for
concrete and prestressed concrete bridges, since these

TABLE 11.2
Computed Equivalent Uniform Annual Costs (EUAC)

Highway Type Bridge Type

Bridge Age

Group (yrs.)

EUAC/Bridge Length

($1,000s per ft.)

(for all Vehicles)

EUAC/Bridge Length

($1,000s per ft.)

(for Overweight Trucks)

Interstate Steel 0–20 850.8 193.5*

21–35 892.0 202.8

36–55 892.2 202.9

56–70 961.3 218.6

Prestressed concrete 0–20 873.4 198.6

21–35 910.2 206.9

36–55 937.4 213.2

56–70 1,017.5 231.4

Reinforced concrete 0–20 842.7 191.6

21–35 874.7 198.9

36–55 905.0 205.8

56–70 979.2 222.6

NHS non-Interstate Steel 0–20 850.8 193.5

21–35 892.0 202.8

36–55 892.2 202.9

56–70 961.3 218.6

Prestressed concrete 0–20 873.4 198.6

21–35 910.2 206.9

36–55 937.4 213.2

56–70 1,017.5 231.4

Reinforced concrete 0–20 842.7 191.6

21–35 874.7 198.9

36–55 905.0 205.8

56–70 979.2 222.6

Non-NHS Steel 0–20 850.8 193.5

21–35 892.0 202.8

36–55 892.2 202.9

56–70 961.3 218.6

Prestressed concrete 0–20 873.4 198.6

21–35 910.2 206.9

36–55 937.4 213.2

56–70 1,017.5 231.4

Reinforced concrete 0–20 842.7 191.6

21–35 874.7 198.9

36–55 905.0 205.8

56–70 979.2 222.6

NOTE: Amounts shown are in year 2010 constant dollar.

*The percentage of OW truck EUAC with respect to total EUAC is approximately 22.7% (193.5/850.8)
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materials comprise the majority of Indiana bridge
construction, and because the profiles do not vary
significantly from those for steel bridges. The lifecycle
activities can thus be described as follows: bridge
replacement in years 0 and 70, deck rehabilitation in
year 20 and 55, and superstructure replacement in year
35 with annual routine maintenance.

The results show that the EUAC increases as the
bridge age increases. For example, the EUAC for an
Interstate steel bridge (0–20 years) is approximately
$850,000 (2010 constant dollars). However, for the
same material type (steel) and functional class in an
older age group (56–70 years), the EUAC is approxi-
mately $960,000 (2010 constant dollars). This variation
in the EUAC values is consistent with expectation
because for an older bridge, the planned reconstruction
is closer to implementation and thus the time value
of money has a greater effect compared to a younger
bridge. The computed EUACs are presented in
Table 11.2 and are used in Chapter 12 for the
incremental cost analysis.

11.6 Chapter Summary

This chapter presented the systematic estimation of
bridge life-cycle cost for the present study. The chapter
presented the procedure used in the selection of cost
models and units cost as inputs into the life-cycle cost
analysis and the estimated bridge life-cycle cost values
were presented. In the next chapter (Chapter 12), the
estimated bridge life-cycle costs are assigned to over-
weight vehicles.

12. ALLOCATION OF BRIDGE COST
RESPONSIBILITIES

12.1 Introduction

In the previous chapter, bridge life-cycle cost was
estimated. In this chapter, the estimated life-cycle costs
are allocated to overweight trucks using three
approaches: disaggregate, semi-disaggregate and aggre-
gate. In each approach, the cost responsibilities for each
overweight truck were estimated on the basis of the
attributes of the overweight truck, the bridge over
which it passes, and the highway. The chapter
investigates the feasibility and benefits of establishing
overweight truck permit fees on the basis of their gross
vehicle weights, axle loadings, and axle spacings. In
doing so, the chapter examines the impacts of the
common practice of aggregating all overweight vehicles
into one category and charging them the same permit
fee, in terms of efficiency and equity.

12.2 Cost Responsibilities of Overweight Trucks

The cost responsibility due to overweight trucks was
found to be approximately 22.7% of the total bridge life-
cycle cost that was presented in Table 11.2. Considering
the fact that overweight trucks span a wide range of
vehicle classes, it is important that this cost is allocated

to each overweight truck class as discussed in Chapter
10. In order to do this, an incremental cost analysis for
overweight trucks only, was carried out. An illustrative
example is herein presented.

Table 12.1 presents a hypothetical example data on
cost responsibilities and Table 12.2 presents example
data on unit damage cost computation. In Table 12.1,
25 million dollars of the damage cost was allocated to
the base overweight truck, HS20. The other heavier
trucks, HS21 and HS22, had damage cost increments of
8 and 7 million dollars, respectively. The traffic volumes
for the trucks, HS20, HS21, and HS22 were 55 million,
20 million and 25 million, respectively. In Table 12.2,
the first increment share was distributed across each
overweight truck on the basis of traffic volume. For
example, HS20 truck was allocated $13.75 in the first
increment, while HS21 and HS22 were allocated $5 and
$6.25, respectively. In the second increment, only the
next heavier vehicles (HS21 and HS22) are considered.
This approach continues until the heaviest vehicle class
is considered. The bridge unit damage cost is computed
by dividing the allocated cost by the truck’s traffic
volume. For example, HS20 was allocated a unit bridge
damage cost of $0.25. The results from the example
show that overweight vehicles with weights far exceed-
ing the legal limit inflict greater cost and hence are
expected to pay more compared to overweight vehicles
with weights not far above the legal limit. It is seen that
the accumulated total damage cost for HS22 vehicles is
$17.69 million (in 2010 constant dollars) and this cost is
borne by 25 million vehicles translating to $0.71 per
vehicle. However, for HS21 vehicles, the accumulated
total damage cost is $8.56 million and this cost is borne
by 20 million vehicles (translating to $0.428 per vehicle).

The illustration shows how incremental cost analysis
is used to equitably allocate the damage cost incurred
due to each vehicle class. This means that it is now
possible to estimate the cost responsibility of each
overweight truck on the basis of the relative damage it
imposes on the bridge structure.

12.3 A Disaggregate Approach for Estimating the Cost
of Bridge Damage Repair

Three approaches (disaggregate, semi-disaggregate
and aggregate) were used separately in this chapter to
estimate the cost responsibilities for each overweight
truck. Under the disaggregate approach, the cost for
each overweight truck was computed on the basis of

TABLE 12.1
Example Data on Cost Increment and Traffic Volume by Vehicle
Class at a Bridge

AASHTO

Vehicle Class

Damage Cost Increment

(2010$ 6 106)

Traffic Volume

(6 106)

HS 20 25 55

HS 21 8 20

HS 22 7 25

Total 40 100
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specific attributes of the bridge, including the highway
class of the bridge, material type, age and on specific
attributes of the overweight truck (GVW, axle loading,
and axle spacing). In the semi-disaggregate approach,
cost responsibilities were computed on the basis of
information on highway functional class of the bridge,
axle configurations and the GVW of the overweight
truck in order to estimate cost of bridge damage for
each vehicle class. Under the aggregate approach,
overweight vehicles are clustered into easy-to-manage
categories (80,000–108,000 lbs, 108,000–150,000 lbs and
above 150,000 lbs) on the basis on GVW without due
consideration of axle configurations.

The disaggregate costs of bridge damage for the
bridge material types (steel, prestressed concrete, and
concrete) are presented in Tables 12.3 to 12.8 and for
bridge age group 0 to 20 years (the costs for the other
bridge age groups are presented in Figures III.A.3 and
III.A.4 in the Part III Appendix). The cost values
presented in Tables III.A.3 and III.A.4 are indicated for
AASHTO design vehicles. In order convert the cost to
FHWA vehicle class, the user will require the variables
discussed in Chapter 10 and conversion from AASHTO
to FHWA vehicle class can be carried out using the
modified equivalent vehicle model developed and
discussed in Chapter 10.

Also, the bridge damage cost was computed under
two options. Option 1 is defined as the costs on the
basis of gross vehicle weight irrespective of the federal
legal weight limit. For example, an overweight truck of
90,000 lbs would be assigned a cost consistent with the
entire gross vehicle weight of 90,000 lbs. This option
was developed in order to assign a cost to overweight
trucks for the total damage they cause to the bridge.
Option 2 refers to the costs due to the difference in the
damage triggered by the excess weight beyond the legal
vehicle weight limit of 80,000 lbs. For example, a truck
of 90,000 lbs would be responsible for the damage
caused by the extra 10,000 lbs only. The second option
was developed to accommodate the assumption that
vehicles weighing up to 80,000 lbs do not incur any cost
associated with overweight operations.

In order to comprehend and adopt an acceptable
permit fee on the basis of these damage costs, considera-
tion must be given to the three vehicle variables used in

the numerical computation of bridge damage. For
example, Tables 12.3 to 12.8 show that a bridge damage
cost analysis based on the GVW would be inappropriate,
inadequate, and inefficient because a vehicle with a
known GVW weight and a higher number of axles would
be expected to pay a lower portion of bridge cost
compared to another vehicle with the same GVW but
with a lower number of axles.

From Figure 12.1 and Table 12.3, on the basis of
option 1, a class 7 truck with the following configuration:
GVW of 95,650 lbs, four axles, average axle spacing of 71
inches, and average axle load of 23,940 lbs would be
incurring a unit cost of 87.9 cents (2010 constant dollars)
per bridge length per pass, for example $87.90 for a one-
time use of a bridge of 100 ft. span. A class 12 truck with a
configuration of GVW of 100,845 lbs, six axles, 132-inch
average axle spacing, and average axle loading of 16,808
lbs would pay 4.7 cents (2010 constant dollars) per bridge
length per pass, for example $4.7 for a one-time use of a
bridge of 100 ft. span.

Using the second option, truck 1 would be seen to be
incurring a lower amount of 86.4 cents per bridge
length per pass while truck 2 would be seen to be
incurring a lower amount of 3.2 cents per bridge length
per pass as illustrated in Figure 12.1.

It may be observed that from the above analysis
(Figure 12.1), there are three factors that significantly
influence the final cost of bridge damage: gross weight,
axle spacing and number of axles. It can be seen that
truck 2 has a higher GVW compared to truck 1.
Secondly, truck 1’s axle spacing is less than that of
truck 2. Thirdly, truck 1’s average axle load is higher
than that of truck 2. On the basis of these three factors,
truck 1 produces a higher moment (higher bridge
damage) compared to truck 2. Therefore using, the
modified equivalent vehicle model, truck 1 is classified
as HS 35 while truck 2 is classified as HS 23.

Bridge damage cost computations were also carried
out for different attributes of the bridge such as the
bridge functional class and age. Quite expectedly, the
results showed that for a vehicle of a given weight,
number of axles and axle configuration, the unit
damage cost, is higher for lower highway classes (such
as state roads) compared to higher highway classes
(such as Interstates). This difference could attributed to

TABLE 12.2
Example Estimation of Bridge Damage Cost Responsibilities by Vehicle Class

Description

AASHTO Vehicle Class
Cost Increment Total

(2010$ 6 106)HS 20 HS 21 HS 22

Share of first increment of damage due to load
25|

55

100
~13:75 25|

20

100
~5:00 25|

25

100
~6:25

25

Share of second increment of damage due to load —
8|

20

45
~3:5 8|

25

45
~4:44

8

Share of third increment of damage due to load — —
7|

25

25
~7:00

7

Cost responsibility $13.75 $8.56 $17.69 $40

Bridge unit damage cost —
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TABLE 12.3
Cost of Steel Bridge Damage due to Overweight Trucks, Disaggregate Approach, 100% Load Share, 0–20 Years Age Group,
Option 1*

Truck

Description

Average

GVW

(lbs)

Average

Spacing

(in)

Average

Axle Load

(lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost

(2010$/ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.879 2.354 8.250

5 axles 92,651 162 18,530 22 0.022 0.059 0.208

6 axles 100,845 132 16,808 23 0.047 0.127 0.445

7 or more axles 99,948 128 15,739 22 0.022 0.059 0.208

Weighted average 0.088 0.234 0.821

108–150kips

4 axles 117,556 61 26,239 41 5.397 14.446 50.626

5 axles 118,893 93 23,779 34 0.738 1.976 6.925

6 axles 120,672 128 20,110 28 0.213 0.569 1.994

7 axles 128,996 116 18,428 27 0.170 0.455 1.595

8 axles 139,692 112 17,461 28 0.213 0.569 1.994

9 or more axles 130,472 120 18,206 27 0.170 0.455 1.595

Weighted average 0.242 0.649 2.274

150–200kips

7 axles 154,627 111 22,086 33 0.619 1.656 5.803

8 axles 161,226 105 20,132 32 0.517 1.383 4.846

9 axles 172,992 122 19,221 30 0.348 0.932 3.267

10 axles 188,433 126 18,843 31 0.430 1.152 4.036

11 axles 189,618 128 17,238 29 0.276 0.739 2.591

12 or more axles 193,318 120 14,425 26 0.138 0.370 1.295

Weighted average 0.440 1.178 4.129

.200kips

11 axles 216,333 127 19,667 33 0.619 1.656 5.803

12 axles 238,000 113 19,833 35 0.879 2.354 8.250

13 axles 241,986 127 18,616 33 0.619 1.656 5.803

14 axles 290,800 106 20,771 39 2.345 6.278 22.001

15 or more axles 417,174 106 23,122 47 8.960 26.880 89.600

Weighted average 3.365 9.907 33.290

*Option 1 is for the damage caused by the entire load of an overweight vehicle (.80,000 lbs).

139Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/01



TABLE 12.4
Cost of Steel Bridge Damage due to Overweight Trucks, Disaggregate Approach, 100% Load Share, 0–20 Years Age Group,
Option 2*

Truck Description

Average

GVW (lbs)

Average

Spacing (in)

Average

Axle Load

(lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge Damage

Cost (2010$/ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.864 2.308 8.097

5 axles 92,651 162 18,530 22 0.007 0.013 0.055

6 axles 100,845 132 16,808 23 0.032 0.081 0.292

7 or more axles 99,948 128 15,739 22 0.007 0.013 0.055

Weighted average 0.072 0.189 0.669

108–150kips

4 axles 117,556 61 26,239 41 5.382 14.401 50.473

5 axles 118,893 93 23,779 34 0.723 1.930 6.772

6 axles 120,672 128 20,110 28 0.197 0.523 1.842

7 axles 128,996 116 18,428 27 0.155 0.409 1.442

8 axles 139,692 112 17,461 28 0.197 0.523 1.842

9 or more axles 130,472 120 18,206 27 0.155 0.409 1.442

Weighted average 0.227 0.603 2.122

150–200kips

7 axles 154,627 111 22,086 33 0.603 1.610 5.650

8 axles 161,226 105 20,132 32 0.501 1.337 4.693

9 axles 172,992 122 19,221 30 0.333 0.887 3.115

10 axles 188,433 126 18,843 31 0.415 1.106 3.883

11 axles 189,618 128 17,238 29 0.261 0.694 2.438

12 or more axles 193,318 120 14,425 26 0.123 0.324 1.142

Weighted average 0.425 1.132 3.976

.200kips

11 axles 216,333 127 19,667 33 0.603 1.610 5.650

12 axles 238,000 113 19,833 35 0.864 2.308 8.097

13 axles 241,986 127 18,616 33 0.603 1.610 5.650

14 axles 290,800 106 20,771 39 2.330 6.232 21.848

15 or more axles 417,174 106 23,122 47 8.945 26.834 89.447

Weighted average 3.350 9.861 33.137

*Option 2 is for the damage caused by the overweight portion only of an overweight vehicle.
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TABLE 12.5
Cost of Prestressed Concrete Bridge Damage due to Overweight Trucks, Disaggregate Approach, 100% Load Share, 0–20 Years Age
Group, Option 1*

Truck Description

Average

GVW (lbs)

Average

Spacing

(in)

Average

Axle Load

(lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost

(2010$/ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.903 2.417 8.469

5 axles 92,651 162 18,530 22 0.023 0.061 0.213

6 axles 100,845 132 16,808 23 0.049 0.130 0.457

7 or more axles 99,948 128 15,739 22 0.023 0.061 0.213

Weighted average 0.090 0.241 0.843

108–150kips

4 axles 117,556 61 26,239 41 5.540 14.830 51.969

5 axles 118,893 93 23,779 34 0.758 2.028 7.109

6 axles 120,672 128 20,110 28 0.218 0.584 2.047

7 axles 128,996 116 18,428 27 0.175 0.467 1.637

8 axles 139,692 112 17,461 28 0.218 0.584 2.047

9 or more axles 130,472 120 18,206 27 0.175 0.467 1.637

Weighted average 0.249 0.666 2.335

150–200kips

7 axles 154,627 111 22,086 33 0.635 1.700 5.957

8 axles 161,226 105 20,132 32 0.530 1.420 4.975

9 axles 172,992 122 19,221 30 0.358 0.957 3.354

10 axles 188,433 126 18,843 31 0.442 1.182 4.143

11 axles 189,618 128 17,238 29 0.284 0.759 2.660

12 or more axles 193,318 120 14,425 26 0.142 0.379 1.329

Weighted average 0.452 1.209 4.238

.200kips

11 axles 216,333 127 19,667 33 0.635 1.700 5.957

12 axles 238,000 113 19,833 35 0.903 2.417 8.469

13 axles 241,986 127 18,616 33 0.635 1.700 5.957

14 axles 290,800 106 20,771 39 2.408 6.445 22.585

15 or more axles 417,174 106 23,122 47 8.965 26.892 89.643

Weighted average 3.382 9.952 33.448

*Option 1 is for the damage caused by the entire load of an overweight vehicle (.80,000 lbs).
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TABLE 12.6
Cost of Prestressed Concrete Bridge Damage due to Overweight Trucks, Disaggregate Approach, 100% Load Share, 0–20 Years Age
Group, Option 2*

Truck Description

Average

GVW (lbs)

Average

Spacing (in)

Average Axle

Load (lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost

(2010$/ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.887 2.369 8.311

5 axles 92,651 162 18,530 22 0.007 0.013 0.055

6 axles 100,845 132 16,808 23 0.033 0.083 0.298

7 or more axles 99,948 128 15,739 22 0.007 0.013 0.055

Weighted average 0.074 0.193 0.685

108–150kips

4 axles 117,556 61 26,239 41 5.524 14.782 51.811

5 axles 118,893 93 23,779 34 0.742 1.981 6.950

6 axles 120,672 128 20,110 28 0.202 0.537 1.889

7 axles 128,996 116 18,428 27 0.159 0.420 1.479

8 axles 139,692 112 17,461 28 0.202 0.537 1.889

9 or more axles 130,472 120 18,206 27 0.159 0.420 1.479

Weighted average 0.233 0.619 2.176

150–200kips

7 axles 154,627 111 22,086 33 0.619 1.653 5.650

8 axles 161,226 105 20,132 32 0.514 1.372 4.693

9 axles 172,992 122 19,221 30 0.342 0.910 3.115

10 axles 188,433 126 18,843 31 0.426 1.135 3.883

11 axles 189,618 128 17,238 29 0.268 0.712 2.438

12 or more axles 193,318 120 14,425 26 0.126 0.332 1.142

Weighted average 0.436 1.162 3.976

.200kips

11 axles 216,333 127 19,667 33 0.619 1.653 5.650

12 axles 238,000 113 19,833 35 0.887 2.369 8.097

13 axles 241,986 127 18,616 33 0.619 1.653 5.650

14 axles 290,800 106 20,771 39 2.392 6.397 21.848

15 or more axles 417,174 106 23,122 47 8.949 26.845 89.447

Weighted average 3.366 9.905 33.137

*Option 2 is for the damage caused by the overweight portion only of an overweight vehicle.
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TABLE 12.7
Cost of Concrete Bridge Damage due to Overweight Trucks, Disaggregate Approach, 100% Load Share, 0–20 Years Age Group,
Option 1*

Truck Description

Average

GVW (lbs)

Average

Spacing (in)

Average Axle

Load (lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost

(2010$/ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.871 2.332 8.171

5 axles 92,651 162 18,530 22 0.022 0.059 0.206

6 axles 100,845 132 16,808 23 0.047 0.126 0.441

7 or more axles 99,948 128 15,739 22 0.022 0.059 0.206

Weighted average 0.087 0.232 0.814

108–150kips

4 axles 117,556 61 26,239 41 5.345 14.308 50.143

5 axles 118,893 93 23,779 34 0.731 1.957 6.859

6 axles 120,672 128 20,110 28 0.211 0.564 1.975

7 axles 128,996 116 18,428 27 0.168 0.451 1.580

8 axles 139,692 112 17,461 28 0.211 0.564 1.975

9 or more axles 130,472 120 18,206 27 0.168 0.451 1.580

Weighted average 0.240 0.643 2.253

150–200kips

7 axles 154,627 111 22,086 33 0.613 1.640 5.748

8 axles 161,226 105 20,132 32 0.512 1.370 4.800

9 axles 172,992 122 19,221 30 0.345 0.923 3.236

10 axles 188,433 126 18,843 31 0.426 1.141 3.997

11 axles 189,618 128 17,238 29 0.274 0.732 2.566

12 or more axles 193,318 120 14,425 26 0.137 0.366 1.283

Weighted average 0.436 1.167 4.089

.200kips

11 axles 216,333 127 19,667 33 0.613 1.640 5.748

12 axles 238,000 113 19,833 35 0.871 2.332 8.171

13 axles 241,986 127 18,616 33 0.613 1.640 5.748

14 axles 290,800 106 20,771 39 2.323 6.218 21.791

15 or more axles 417,174 106 23,122 47 8.963 26.888 89.627

Weighted average 3.360 9.894 33.246

*Option 1 is for the damage caused by the entire load of an overweight vehicle (.80,000 lbs).
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(i) differences in the life-cycle costs of reconstruction
and rehabilitation across the highway functional class
that are, in turn due to these different design standards
of different highway classes, and (ii) the differences in
truck traffic volumes across the highway classes (higher
volumes on Interstates means more users share the
cost).

Using the two truck configurations discussed earlier
in this section (Figure 12.1), we estimated and
compared the expected bridge damage cost for each
highway class as shown in Table 5.3. For example,
using a steel bridge length of 100 feet under option 1,
truck 1 would be expected to incur a bridge damage
cost (in 2010 constant dollars) of $88 (0.871 6 100),
$235 (2.354 6 100), and $825 (8.25 6 100) per pass for
Interstate, NHS-non-Interstate, and NNHS steel
bridges, respectively under option 1. Truck 2’s expected
bridge damage cost are $5 (0.047 6 100), $13 (0.126 6

100) and $45 (0.445 6 100) per pass for a 100 ft. steel
bridge of Interstate, NHS-non-Interstate and NNHS
functional classes, respectively (Figure 12.2). The bridge
damage costs for the two trucks, under option 2, are also
presented in Figure 12.2.

The above analysis carried out for steel bridges is
repeated for prestressed concrete bridges and concrete
cast-in-situ bridges and the results are presented in
Tables 12.5, 12.6, 12.7 and 12.8.

12.4 A Semi-aggregate Approach for Estimating the Cost
of Bridge Damage Repair

In the previous section, the bridge damage cost was
derived on the basis of the assumption that the agency
possesses detailed disaggregate information on the
highway bridge as well as the trucks using the bridge.
It can be considered efficient to charge overweight

TABLE 12.8
Cost of Concrete Bridge Damage due to Overweight Trucks, Disaggregate Approach, 100% Load Share, 0–20 Years Age Group,
Option 2*

Truck Description

Average

GVW (lbs)

Average

Spacing (in)

Average

Axle Load

(lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost (2010$/

ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.856 2.286 8.021

5 axles 92,651 162 18,530 22 0.007 0.013 0.055

6 axles 100,845 132 16,808 23 0.032 0.080 0.290

7 or more axles 99,948 128 15,739 22 0.007 0.013 0.055

Weighted average 0.072 0.187 0.663

108–150kips

4 axles 117,556 61 26,239 41 5.330 14.263 49.992

5 axles 118,893 93 23,779 34 0.716 1.912 6.708

6 axles 120,672 128 20,110 28 0.196 0.518 1.825

7 axles 128,996 116 18,428 27 0.153 0.405 1.429

8 axles 139,692 112 17,461 28 0.196 0.518 1.825

9 or more axles 130,472 120 18,206 27 0.153 0.405 1.429

Weighted average 0.225 0.598 2.102

150–200kips

7 axles 154,627 111 22,086 33 0.598 1.595 5.597

8 axles 161,226 105 20,132 32 0.497 1.324 4.649

9 axles 172,992 122 19,221 30 0.330 0.878 3.086

10 axles 188,433 126 18,843 31 0.411 1.095 3.847

11 axles 189,618 128 17,238 29 0.259 0.687 2.416

12 or more axles 193,318 120 14,425 26 0.122 0.321 1.132

Weighted average 0.421 1.122 3.939

.200kips

11 axles 216,333 127 19,667 33 0.598 1.595 5.597

12 axles 238,000 113 19,833 35 0.856 2.286 8.021

13 axles 241,986 127 18,616 33 0.598 1.595 5.597

14 axles 290,800 106 20,771 39 2.308 6.173 21.640

15 or more axles 417,174 106 23,122 47 8.948 8.975 89.477

Weighted average 3.345 4.303 33.095

*Option 2 is for the damage caused by the overweight portion only of an overweight vehicle.
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trucks at the disaggregate level because the bridge
damage cost is determined using full information on the
bridges and the overweight trucks.

However, where information on the individual
bridges and vehicles is not available, the agency can
cluster the bridges into an appropriate number of
highways classes and then estimate the damage costs for
overweight trucks based on their GVW, axle config-
urations and highway class. This is referred to as the
semi-disaggregate approach. In this study, the semi-
disaggregate costs of bridge damage were computed for

each highway class by taking a weighted average of the
bridge damage costs that were determined at the
disaggregate level in Section 12.3. The results are
presented in Tables 12.9 and 12.10.

From Table 12.9, using a bridge length of 100 feet
under option 1, truck 1 was expected to incur a
bridge damage cost (in 2010 constant dollars) of $9
(0.895 6 100), $242 (2.418 6 100) and $849 (8.493
6 100) per pass at Interstate, NHS-non-Interstate,
and NNHS steel bridges, respectively. Truck 2’s
expected bridge damage costs are $5 (0.048 6 100),

Figure 12.2 Overweight truck damage costs based on a 100-ft. steel bridge, using the disaggregate approach.

Figure 12.1 Illustration of bridge damage cost computation under the different options.

145Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/01



$13 (0.130 6 100) and $46 (0.458 6 100) per pass for
Interstate, NHS-non-Interstate, and NNHS steel
bridges, respectively, as presented in Figure 12.3.
The semi-disaggregate bridge damage costs for
the two trucks, under option 2, are presented in
Table 12.10 and shown in Figure 12.3.

12.5 An Aggregate Approach for Estimating the Cost of
Bridge Damage

In the previous section, the semi-disaggregate
approach was used for estimating the cost of bridge
damage repair. Implementation of the semi-disaggregate
approach would require the following information: the
highway functional class, axle configurations and the
GVW of the overweight truck. In the absence of an
available database system that connects the above
information, most agencies cluster overweight trucks
into easy-to-manage categories in order to facilitate the
permit fee issuing process. This appears to the case in

Indiana, where INDOR issues permits of three cate-
gories corresponding to three overweight truck cate-
gories (80,000–108,000 lbs, 108,001–150,000 lbs and
above 150,000 lbs) on the basis of GVWs without
consideration of axle configurations for some categories.
These three categories are considered when pavement
permits are issued; however, for bridges, only overweight
trucks above 200,000 lbs are issued bridge permits.

In the absence of available database systems needed
to implement the disaggregate approach or the semi-
disaggregate approach, the state of Indiana could adopt
an aggregate level approach based on GVWs and axle
configurations. However, if the state of Indiana seeks to
continue using the existing overweight truck categories
without incorporating the axle configurations, the
weighted bridge damage cost for each truck category
(Table 5.11) could potentially be used. It may be noted
that the bridge damage cost established under the
aggregate approach is a weighted average of the costs
computed at the semi-aggregate level. The aggregate

TABLE 12.9
Cost of Bridge Damage due to Overweight Trucks, Semi-disaggregate Approach, 100% Load Share, Option 1

Truck Description

Average

GVW (lbs)

Average

Spacing (in)

Average

Axle Load

(lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost (2010$/

ft./pass)

NHS-NI Bridge

Damage Cost (2010$/

ft./pass)

NNHS Bridge Damage

Cost (2010$/ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.895 2.418 8.493

5 axles 92,651 162 18,530 22 0.023 0.061 0.214

6 axles 100,845 132 16,808 23 0.048 0.130 0.458

7 or more axles 99,948 128 15,739 22 0.023 0.061 0.214

Weighted average 0.089 0.241 0.846

108–150kips

4 axles 117,556 61 26,239 41 5.490 14.840 52.117

5 axles 118,893 93 23,779 34 0.751 2.030 7.129

6 axles 120,672 128 20,110 28 0.216 0.585 2.053

7 axles 128,996 116 18,428 27 0.173 0.467 1.642

8 axles 139,692 112 17,461 28 0.216 0.585 2.053

9 or more axles 130,472 120 18,206 27 0.173 0.467 1.642

Weighted average 0.247 0.667 2.341

150–200kips

7 axles 154,627 111 22,086 33 0.629 1.701 5.974

8 axles 161,226 105 20,132 32 0.526 1.421 4.989

9 axles 172,992 122 19,221 30 0.354 0.958 3.364

10 axles 188,433 126 18,843 31 0.438 1.183 4.155

11 axles 189,618 128 17,238 29 0.281 0.760 2.667

12 or more axles 193,318 120 14,425 26 0.140 0.380 1.333

Weighted average 0.448 1.210 4.250

.200kips

11 axles 216,333 127 19,667 33 0.629 1.701 5.974

12 axles 238,000 113 19,833 35 0.895 2.418 8.493

13 axles 241,986 127 18,616 33 0.629 1.701 5.974

14 axles 290,800 106 20,771 39 2.386 6.449 22.649

15 or more axles 417,174 106 23,122 47 34.388 26.896 89.667

Weighted average 11.268 9.954 33.472
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TABLE 12.10
Cost of Bridge Damage due to Overweight Trucks, Semi-disaggregate Approach, 100% Load Share, Option 2

Truck Description

Average

GVW

(lbs)

Average

Spacing (in)

Average Axle

Load (lbs)

Equivalent Load

(HS)

Interstate Bridge

Damage Cost (2010$/

ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost

(2010$/ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.882 2.366 8.366

5 axles 92,651 162 18,530 22 0.007 0.013 0.055

6 axles 100,845 132 16,808 23 0.033 0.083 0.300

7 or more axles 99,948 128 15,739 22 0.007 0.013 0.055

Weighted average 0.074 0.193 0.689

108–150kips

4 axles 117,556 61 26,239 41 5.491 14.760 52.159

5 axles 118,893 93 23,779 34 0.737 1.978 6.997

6 axles 120,672 128 20,110 28 0.201 0.536 1.901

7 axles 128,996 116 18,428 27 0.158 0.419 1.488

8 axles 139,692 112 17,461 28 0.201 0.536 1.901

9 or more axles 130,472 120 18,206 27 0.158 0.419 1.488

Weighted average 0.232 0.618 2.191

150–200kips

7 axles 154,627 111 22,086 33 0.615 1.650 5.837

8 axles 161,226 105 20,132 32 0.511 1.370 4.849

9 axles 172,992 122 19,221 30 0.340 0.908 3.217

10 axles 188,433 126 18,843 31 0.423 1.133 4.011

11 axles 189,618 128 17,238 29 0.266 0.711 2.518

12 or more axles 193,318 120 14,425 26 0.125 0.331 1.179

Weighted average 0.433 1.160 4.107

.200kips

11 axles 216,333 127 19,667 33 0.615 1.650 5.837

12 axles 238,000 113 19,833 35 0.882 2.366 8.366

13 axles 241,986 127 18,616 33 0.615 1.650 5.837

14 axles 290,800 106 20,771 39 2.377 6.388 22.577

15 or more axles 417,174 106 23,122 47 8.948 26.847 89.508

Weighted average 3.362 9.903 33.334

Figure 12.3 Bridge/overweight truck damage costs based on a 100-ft. steel bridge, using the semi-disaggregate approach.
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cost responsibilities were converted into a mileage-
based cost using Equation 12.1. It must be noted that
the number of bridges available on the national truck
route is 3,128 (165) and the length of Indiana national
truck network size is 6,145 miles (166).

For example, the aggregate cost responsibility for truck
1 (see Figure 12.1 for definition), per foot is $3.24,
computed as the weighted average of the bridge damage
cost across the three road classes. For truck 1 (HS-35),
the damage cost for Interstate is $0.895 (see Table 5.9)
and there are 1,434 Interstate bridges; for NHS-non-
Interstate, the damage cost is $2.418 (Table 5.9) and there
are 911 bridges; for non-NHS, damage cost was $8.493
(Table 5.9) and there 783 bridges. Therefore, taking a
weighted average of these costs yields:

~
0:895|1434ð Þz 2:418|911ð Þz 8:493|783ð Þ

1434z911z783
~$3:24=ft:

In order to convert the cost per foot to cost per mile, the

$3.24 per foot will yield:
$3:24

ft
|

224ft

bridge
|

3128 bridge

6145mile
~

$369:435 per mile.

This same approach was used for truck 2. Therefore,
the aggregate cost for truck 2 is:

$0:175

ft
|

224ft

bridge
|

3128 bridge

6145mile
~$19:92 per mile:

In some states, such as New York, overweight trucks
are required to pay as much as $25 per pass for certain
bridges. However, because the above mentioned trucks
are classified under category 1 overweight trucks
(80,000–108,000 lbs), the weighted aggregate cost
responsibility will be $36.79 per mile (under option 1)
or $29.93 per mile (under option 2), all in 2010 constant
dollars. The results for the three overweight truck
categories are presented in Table 12.11.

TABLE 12.11
Cost of Bridge Damage due to OW Trucks, Aggregate Approach, 100% Load Share

Truck Description

% of

Volume

Average

GVW (lbs)

Average

Spacing (in)

Average Axle

Load (lbs)

Equivalent Load

(HS)

Option 1: Total Truck

Weight Bridge Damage

Cost (2010$/mi)

Option 2: Excess Truck

Weight Bridge Damage

Cost (2010$/mi)

80–108kips

4 axles 2.58 95,650 71 23,940 35 369.486 363.437

5 axles 12.71 92,651 162 18,530 22 9.302 2.376

6 axles 17.32 100,845 132 16,808 23 19.920 13.020

7 or more axles 7.88 99,948 128 15,739 22 9.302 2.376

Weighted average 36.786 29.927

108–150kips

4 axles 0.40 117,556 61 26,239 41 2267.324 2265.892

5 axles 0.62 118,893 93 23,779 34 310.137 303.943

6 axles 18.83 120,672 128 20,110 28 89.321 82.589

7 axles 17.87 128,996 116 18,428 27 71.423 64.648

8 axles 3.72 139,692 112 17,461 28 89.321 82.589

9 and more axles 5.71 130,472 120 18,206 27 71.423 64.648

Weighted average 101.858 95.157

150–200kips

7 axles 2.91 154,627 111 22,086 33 259.898 253.581

8 axles 1.71 161,226 105 20,132 32 217.039 210.618

9 axles 0.48 172,992 122 19,221 30 146.336 139.743

10 axles 0.27 188,433 126 18,843 31 180.747 174.238

11 axles 0.29 189,618 128 17,238 29 116.047 109.380

12 and more axles 1.24 193,318 120 14,425 26 57.994 51.186

Weighted average 195.982 189.510

.200kips

11 axles 0.92 216,333 127 19,667 33 259.898 253.581

12 axles 0.26 238,000 113 19,833 35 369.486 363.437

13 axles 0.15 241,986 127 18,616 33 259.898 253.581

14 axles 0.16 290,800 106 20,771 39 985.325 980.773

15 and more axles 0.67 417,174 106 23,122 47 3,921.048 3,914.012

Weighted average 1462.428 1456.049
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Adopting an aggregate approach will result in lower
estimates of the costs relative to their current fees for
bridge damage costs. For example, using the aggregate
approach, truck 1 (see Figure 12.1) incurs by 90%
(under option 1) and over 92% (under option 2). On the
other hand, a 7 or more axle overweight truck in
category 1 (80,000–108,000 lbs) will be seen to incur
costs that exceed their current fees by 395% and 1260%
under options 1 and 2, respectively.

12.6 Scenarios for Load and Non-Load Shares of Bridge
Damage Cost

The estimated bridge damage cost discussed up to
this section of the report was carried out on the
assumption that only load affects maintenance and
rehabilitation expenditures. Thus, Tables 12.3 to
12.11 assume 100% load share and 0% non-load
share of bridge damage cost. In reality, non-load factors
can and do account for a significant share of bridge
damage, as evidenced by the damaging effects of
environmental factors including freeze and thaw cycles
on the concrete, the corrosive effects of deicing salts on
rebars, and oxidation of joint sealants, and other
deleterious effects of the environment. However, due
to the lack of any empirical study that establishes the
load and non-load shares of bridge cost, the present
study considers two scenarios for the load and non-load
shares. The scenarios were determined on the basis of
load and no-load shares that were established in pavement
management by (172) as follows: 25% to 85% load
and non-load shares of pavement maintenance and
rehabilitation expenditures depending on factors includ-
ing the pavement type and pavement improvement type.
Thus, the two scenarios for load and non-load shares
used in the present study are: Scenario 1: 25%–75%; and
Scenario 2: 85%–15%.

For Scenario 1 that assumes 25% load share of
bridge damage, this section presents the cost of bridge
damage for the disaggregate approach (Tables 12.12 to
12.17), the semi-disaggregate approach (Tables 12.18
and 12.19), and the aggregate approach (Table 12.20).
For each scenario and approach, the bridge damage
costs are presented for each of the three types of bridge
material (steel, prestressed concrete and concrete).
Similarly, for Scenario 2 that assumes 85% of load
share of bridge damage, the bridge damage cost for the
disaggregate, semi-disaggregate and aggregate approaches
are presented in Tables 12.21 to 12.29.

12.7 Comparison of Indiana’s Bridge Damage Costs with
Those of Other States

All states charge a form of fee for use of bridges by
overweight trucks to cover bridge damage. In most states,
it is implicit in the permit fee while in other states, it is
explicit in the permit fee. However, the cost for bridge
damage for each overweight truck type varies across the
states. In some states, operators of a certain category of
highly overweight trucks often considered as superloads

(the weight threshold for a superload varies across states)
are expected to pay permit fees after structural engineers
have analyze the damage occasioned by the truck on the
basis of its load and axle configurations. For example, in
Indiana, overweight trucks above 200,000 lbs (classified as
super loads (173), are required to pay the following fees
(Figure III.A.2 in the Part III Appendix):

N $20 overweight fee

N $1 per mile fee

N $10 executive fee

N $25 design review fee and

N Bridge fee of $10 per bridge ($100 minimum if fewer than
10 bridges) (173)

The bridge fee is determined after the structural
analysis was completed (some states charge extra for the
structural analysis). In New Hampshire, for example, a
design review fee of $40 is charged before the structural
analysis is conducted. Other states charge a flat fee for all
overweight trucks. For example, in New York, over-
weight trucks are charged $25 for a particular bridge
crossing. The crossing of the same bridge in the opposite
direction is not charged. Although the annual over-
weight permit is $1,000, it is limited to the crossing of 40
bridges by the truck receiving the permit. Beginning with
the 41st bridge crossing, the overweight truck is invoiced
an additional $25 for each crossing (174).

Charging all overweight vehicles regardless of weight
and axle configuration, as practiced in the New York
bridge, can result in undercharging overweight trucks of
excessive overweight levels and overcharging overweight
trucks of slightly overweight levels as discussed in previous
sections in this chapter. Therefore, aggregating all over-
weight vehicles into one category and charging them the
same permit fee will result in inefficiency and inequity.

It can be argued therefore, that overweight truck
permit fees should be based on their GVW, axle
loading, and axle spacing. This is feasible, as demon-
strated by the results presented in Tables 12.3 to 12.5
and in the Part III Appendix (Figures III.A.3 and
III.A.4). These results could be used to estimate the
permit fee for any class of overweight trucks.

12.8 Chapter Summary

This chapter presented a numerical example for
allocating bridge damage cost (incurred over a typical
life cycle), to overweight trucks. Furthermore, this
chapter presented three approaches, disaggregate, semi-
disaggregate and aggregate, that can be used to
estimate the cost responsibilities for each overweight
truck on the basis of available bridge, highway and
overweight truck information. In this chapter, bridge
damage costs (and hence overweight truck permit fees)
were established on the basis of GVW, axle loading,
and axle spacing. It can be seen from the results that
aggregating all overweight vehicles into one category
and charging them the same permit fee will result in
inefficiency and inequity. The chapter also recognized
that not all bridge damage cost is due to load. However,
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TABLE 12.12
Cost of Steel Bridge Damage due to Overweight Trucks, Disaggregate Approach, 25% Load Share, 0–20 Years Age Group,
Option 1

Truck Description

Average

GVW (lbs)

Average

Spacing (in)

Average Axle

Load (lbs)

Equivalent Load

(HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost

(2010$/ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.220 0.589 2.063

5 axles 92,651 162 18,530 22 0.006 0.015 0.052

6 axles 100,845 132 16,808 23 0.012 0.032 0.111

7 or more axles 99,948 128 15,739 22 0.006 0.015 0.052

Weighted average 0.022 0.059 0.205

108–150kips

4 axles 117,556 61 26,239 41 1.349 3.612 12.657

5 axles 118,893 93 23,779 34 0.185 0.494 1.731

6 axles 120,672 128 20,110 28 0.053 0.142 0.499

7 axles 128,996 116 18,428 27 0.043 0.114 0.399

8 axles 139,692 112 17,461 28 0.053 0.142 0.499

9 and more axles 130,472 120 18,206 27 0.043 0.114 0.399

Weighted average 0.061 0.162 0.569

150–200kips

7 axles 154,627 111 22,086 33 0.155 0.414 1.451

8 axles 161,226 105 20,132 32 0.129 0.346 1.212

9 axles 172,992 122 19,221 30 0.087 0.233 0.817

10 axles 188,433 126 18,843 31 0.108 0.288 1.009

11 axles 189,618 128 17,238 29 0.069 0.185 0.648

12 and more axles 193,318 120 14,425 26 0.035 0.092 0.324

Weighted average 0.110 0.295 1.032

.200kips

11 axles 216,333 127 19,667 33 0.155 0.414 1.451

12 axles 238,000 113 19,833 35 0.220 0.589 2.063

13 axles 241,986 127 18,616 33 0.155 0.414 1.451

14 axles 290,800 106 20,771 39 0.586 1.570 5.500

15 and more axles 417,174 106 23,122 47 2.240 6.720 22.400

Weighted average 0.841 2.477 8.322
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TABLE 12.13
Cost of Steel Bridge Damage due to Overweight Trucks, Disaggregate Approach, 25% Load Share, 0–20 Years Age Group,
Option 2

Truck Description

Average

GVW (lbs)

Average

Spacing (in)

Average Axle

Load (lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost (2010$/

ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.216 0.577 2.024

5 axles 92,651 162 18,530 22 0.002 0.003 0.014

6 axles 100,845 132 16,808 23 0.008 0.020 0.073

7 or more axles 99,948 128 15,739 22 0.002 0.003 0.014

Weighted average 0.018 0.047 0.167

108–150kips

4 axles 117,556 61 26,239 41 1.345 3.600 12.618

5 axles 118,893 93 23,779 34 0.181 0.483 1.693

6 axles 120,672 128 20,110 28 0.049 0.131 0.460

7 axles 128,996 116 18,428 27 0.039 0.102 0.361

8 axles 139,692 112 17,461 28 0.049 0.131 0.460

9 and more axles 130,472 120 18,206 27 0.039 0.102 0.361

Weighted average 0.057 0.151 0.530

150–200kips

7 axles 154,627 111 22,086 33 0.151 0.403 1.413

8 axles 161,226 105 20,132 32 0.125 0.334 1.173

9 axles 172,992 122 19,221 30 0.083 0.222 0.779

10 axles 188,433 126 18,843 31 0.104 0.276 0.971

11 axles 189,618 128 17,238 29 0.065 0.173 0.610

12 and more axles 193,318 120 14,425 26 0.031 0.081 0.286

Weighted average 0.106 0.283 0.994

.200kips

11 axles 216,333 127 19,667 33 0.151 0.403 1.413

12 axles 238,000 113 19,833 35 0.216 0.577 2.024

13 axles 241,986 127 18,616 33 0.151 0.403 1.413

14 axles 290,800 106 20,771 39 0.583 1.558 5.462

15 and more axles 417,174 106 23,122 47 2.236 6.709 22.362

Weighted average 0.837 2.465 8.284
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TABLE 12.14
Cost of Prestressed Concrete Bridge Damage due to Overweight Trucks, Disaggregate Approach, 25% Load Share, 0–20 Years Age
Group, Option 1

Truck Description

Average

GVW (lbs)

Average

Spacing (in)

Average Axle

Load (lbs)

Equivalent Load

(HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost

(2010$/ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.226 0.604 2.117

5 axles 92,651 162 18,530 22 0.006 0.015 0.053

6 axles 100,845 132 16,808 23 0.012 0.033 0.114

7 or more axles 99,948 128 15,739 22 0.006 0.015 0.053

Weighted average 0.022 0.060 0.211

108–150kips

4 axles 117,556 61 26,239 41 1.385 3.707 12.992

5 axles 118,893 93 23,779 34 0.189 0.507 1.777

6 axles 120,672 128 20,110 28 0.055 0.146 0.512

7 axles 128,996 116 18,428 27 0.044 0.117 0.409

8 axles 139,692 112 17,461 28 0.055 0.146 0.512

9 and more axles 130,472 120 18,206 27 0.044 0.117 0.409

Weighted average 0.062 0.167 0.584

150–200kips

7 axles 154,627 111 22,086 33 0.159 0.425 1.489

8 axles 161,226 105 20,132 32 0.133 0.355 1.244

9 axles 172,992 122 19,221 30 0.089 0.239 0.839

10 axles 188,433 126 18,843 31 0.110 0.296 1.036

11 axles 189,618 128 17,238 29 0.071 0.190 0.665

12 and more axles 193,318 120 14,425 26 0.035 0.095 0.332

Weighted average 0.113 0.302 1.060

.200kips

11 axles 216,333 127 19,667 33 0.159 0.425 1.489

12 axles 238,000 113 19,833 35 0.226 0.604 2.117

13 axles 241,986 127 18,616 33 0.159 0.425 1.489

14 axles 290,800 106 20,771 39 0.602 1.611 5.646

15 and more axles 417,174 106 23,122 47 2.241 6.723 22.411

Weighted average 0.846 2.488 8.362
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TABLE 12.15
Cost of Prestressed Concrete Bridge Damage due to Overweight Trucks, Disaggregate Approach, 25% Load Share, 0–20 Years Age
Group, Option 2

Truck Description

Average

GVW (lbs)

Average

Spacing (in)

Average Axle

Load (lbs)

Equivalent Load

(HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost

(2010$/ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.222 0.592 2.078

5 axles 92,651 162 18,530 22 0.002 0.003 0.014

6 axles 100,845 132 16,808 23 0.008 0.021 0.075

7 or more axles 99,948 128 15,739 22 0.002 0.003 0.014

Weighted average 0.019 0.048 0.171

108–150kips

4 axles 117,556 61 26,239 41 1.381 3.696 12.953

5 axles 118,893 93 23,779 34 0.185 0.495 1.738

6 axles 120,672 128 20,110 28 0.051 0.134 0.472

7 axles 128,996 116 18,428 27 0.040 0.105 0.370

8 axles 139,692 112 17,461 28 0.051 0.134 0.472

9 and more axles 130,472 120 18,206 27 0.040 0.105 0.370

Weighted average 0.058 0.155 0.544

150–200kips

7 axles 154,627 111 22,086 33 0.155 0.413 1.413

8 axles 161,226 105 20,132 32 0.129 0.343 1.173

9 axles 172,992 122 19,221 30 0.085 0.227 0.779

10 axles 188,433 126 18,843 31 0.106 0.284 0.971

11 axles 189,618 128 17,238 29 0.067 0.178 0.610

12 and more axles 193,318 120 14,425 26 0.031 0.083 0.286

Weighted average 0.109 0.291 0.994

.200kips

11 axles 216,333 127 19,667 33 0.155 0.413 1.413

12 axles 238,000 113 19,833 35 0.222 0.592 2.024

13 axles 241,986 127 18,616 33 0.155 0.413 1.413

14 axles 290,800 106 20,771 39 0.598 1.599 5.462

15 and more axles 417,174 106 23,122 47 2.237 6.711 22.362

Weighted average 0.842 2.476 8.284
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TABLE 12.16
Cost of Concrete Bridge Damage due to Overweight Trucks, Disaggregate Approach, 25% Load Share, 0–20 Years Age Group,
Option 1

Truck Description

Average GVW

(lbs)

Average

Spacing (in)

Average Axle

Load (lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost

(2010$/ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.218 0.583 2.043

5 axles 92,651 162 18,530 22 0.005 0.015 0.051

6 axles 100,845 132 16,808 23 0.012 0.031 0.110

7 or more axles 99,948 128 15,739 22 0.005 0.015 0.051

Weighted average 0.022 0.058 0.203

108–150kips

4 axles 117,556 61 26,239 41 1.336 3.577 12.536

5 axles 118,893 93 23,779 34 0.183 0.489 1.715

6 axles 120,672 128 20,110 28 0.053 0.141 0.494

7 axles 128,996 116 18,428 27 0.042 0.113 0.395

8 axles 139,692 112 17,461 28 0.053 0.141 0.494

9 and more axles 130,472 120 18,206 27 0.042 0.113 0.395

Weighted average 0.060 0.161 0.563

150–200kips

7 axles 154,627 111 22,086 33 0.153 0.410 1.437

8 axles 161,226 105 20,132 32 0.128 0.342 1.200

9 axles 172,992 122 19,221 30 0.086 0.231 0.809

10 axles 188,433 126 18,843 31 0.107 0.285 0.999

11 axles 189,618 128 17,238 29 0.068 0.183 0.642

12 and more axles 193,318 120 14,425 26 0.034 0.091 0.321

Weighted average 0.109 0.292 1.022

.200kips

11 axles 216,333 127 19,667 33 0.153 0.410 1.437

12 axles 238,000 113 19,833 35 0.218 0.583 2.043

13 axles 241,986 127 18,616 33 0.153 0.410 1.437

14 axles 290,800 106 20,771 39 0.581 1.555 5.448

15 and more axles 417,174 106 23,122 47 2.241 6.722 22.407

Weighted average 0.840 2.474 8.311
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TABLE 12.17
Cost of Concrete Bridge Damage due to Overweight Trucks, Disaggregate Approach, 25% Load Share, 0–20 Years Age Group,
Option 2

Truck Description

Average GVW

(lbs)

Average

Spacing (in)

Average Axle

Load (lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost

(2010$/ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.214 0.572 2.005

5 axles 92,651 162 18,530 22 0.002 0.003 0.014

6 axles 100,845 132 16,808 23 0.008 0.020 0.072

7 or more axles 99,948 128 15,739 22 0.002 0.003 0.014

Weighted average 0.018 0.047 0.166

108–150kips

4 axles 117,556 61 26,239 41 1.333 3.566 12.498

5 axles 118,893 93 23,779 34 0.179 0.478 1.677

6 axles 120,672 128 20,110 28 0.049 0.130 0.456

7 axles 128,996 116 18,428 27 0.038 0.101 0.357

8 axles 139,692 112 17,461 28 0.049 0.130 0.456

9 and more axles 130,472 120 18,206 27 0.038 0.101 0.357

Weighted average 0.056 0.149 0.525

150–200kips

7 axles 154,627 111 22,086 33 0.149 0.399 1.399

8 axles 161,226 105 20,132 32 0.124 0.331 1.162

9 axles 172,992 122 19,221 30 0.082 0.220 0.771

10 axles 188,433 126 18,843 31 0.103 0.274 0.962

11 axles 189,618 128 17,238 29 0.065 0.172 0.604

12 and more axles 193,318 120 14,425 26 0.030 0.080 0.283

Weighted average 0.105 0.280 0.985

.200kips

11 axles 216,333 127 19,667 33 0.149 0.399 1.399

12 axles 238,000 113 19,833 35 0.214 0.572 2.005

13 axles 241,986 127 18,616 33 0.149 0.399 1.399

14 axles 290,800 106 20,771 39 0.577 1.543 5.410

15 and more axles 417,174 106 23,122 47 2.237 2.244 22.369

Weighted average 0.836 1.076 8.274
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TABLE 12.18
Cost of Bridge Damage due to Overweight Trucks, Semi-disaggregate Approach, 25% Load Share, Option 1

Truck Description

Average GVW

(lbs)

Average

Spacing (in)

Average

Axle Load

(lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost (2010$/

ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.224 0.605 2.123

5 axles 92,651 162 18,530 22 0.006 0.015 0.053

6 axles 100,845 132 16,808 23 0.012 0.033 0.114

7 or more axles 99,948 128 15,739 22 0.224 0.605 2.123

Weighted average 0.065 0.175 0.614

108–150kips

4 axles 117,556 61 26,239 41 1.373 3.710 13.029

5 axles 118,893 93 23,779 34 0.188 0.507 1.782

6 axles 120,672 128 20,110 28 0.054 0.146 0.513

7 axles 128,996 116 18,428 27 0.043 0.117 0.410

8 axles 139,692 112 17,461 28 0.054 0.146 0.513

9 and more axles 130,472 120 18,206 27 0.043 0.117 0.410

Weighted average 0.062 0.167 0.585

150–200kips

7 axles 154,627 111 22,086 33 0.157 0.425 1.494

8 axles 161,226 105 20,132 32 0.131 0.355 1.247

9 axles 172,992 122 19,221 30 0.089 0.239 0.841

10 axles 188,433 126 18,843 31 0.109 0.296 1.039

11 axles 189,618 128 17,238 29 0.070 0.190 0.667

12 and more axles 193,318 120 14,425 26 0.035 0.095 0.333

Weighted average 0.112 0.303 1.063

.200kips

11 axles 216,333 127 19,667 33 0.157 0.425 1.494

12 axles 238,000 113 19,833 35 0.224 0.605 2.123

13 axles 241,986 127 18,616 33 0.157 0.425 1.494

14 axles 290,800 106 20,771 39 0.596 1.612 5.662

15 and more axles 417,174 106 23,122 47 2.241 6.724 22.417

Weighted average 0.844 2.489 8.368
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TABLE 12.19
Cost of Bridge Damage due to Overweight Trucks, Semi-disaggregate Approach, 25% Load Share, Option 2

Truck Description

Average

GVW (lbs)

Average

Spacing (in)

Average Axle

Load (lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost

(2010$/ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.220 0.591 2.092

5 axles 92,651 162 18,530 22 0.002 0.003 0.014

6 axles 100,845 132 16,808 23 0.008 0.021 0.075

7 or more axles 99,948 128 15,739 22 0.220 0.591 2.092

Weighted average 0.061 0.163 0.577

108–150kips

4 axles 117,556 61 26,239 41 1.373 3.690 13.040

5 axles 118,893 93 23,779 34 0.184 0.495 1.749

6 axles 120,672 128 20,110 28 0.050 0.134 0.475

7 axles 128,996 116 18,428 27 0.039 0.105 0.372

8 axles 139,692 112 17,461 28 0.050 0.134 0.475

9 and more axles 130,472 120 18,206 27 0.039 0.105 0.372

Weighted average 0.058 0.154 0.548

150–200kips

7 axles 154,627 111 22,086 33 0.154 0.413 1.459

8 axles 161,226 105 20,132 32 0.128 0.343 1.212

9 axles 172,992 122 19,221 30 0.085 0.227 0.804

10 axles 188,433 126 18,843 31 0.106 0.283 1.003

11 axles 189,618 128 17,238 29 0.067 0.178 0.630

12 and more axles 193,318 120 14,425 26 0.031 0.083 0.295

Weighted average 0.108 0.290 1.027

.200kips

11 axles 216,333 127 19,667 33 0.154 0.413 1.459

12 axles 238,000 113 19,833 35 0.220 0.591 2.092

13 axles 241,986 127 18,616 33 0.154 0.413 1.459

14 axles 290,800 106 20,771 39 0.594 1.597 5.644

15 and more axles 417,174 106 23,122 47 2.237 6.712 22.377

Weighted average 0.841 2.476 8.334
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TABLE 12.20
Cost of Bridge Damage due to Overweight Trucks, Aggregate Approach, 25% Load Share, Option 1

Truck Description % of Volume

Average GVW

(lbs)

Average

Spacing (in)

Average Axle

Load (lbs)

Equivalent Load

(HS)

Option 1: Total

Truck Weight Bridge

Damage Cost

(2010$/mi)

Option 2: Excess

Truck Weight

Bridge Damage Cost

(2010$/mi)

80–108kips

4 axles 2.58 95,650 71 23,940 35 92.372 90.859

5 axles 12.71 92,651 162 18,530 22 2.326 0.594

6 axles 17.32 100,845 132 16,808 23 4.980 3.255

7 or more axles 7.88 99,948 128 15,739 22 2.326 0.594

Weighted average 9.196 7.482

108–150kips

4 axles 0.40 117,556 61 26,239 41 566.831 566.473

5 axles 0.62 118,893 93 23,779 34 77.534 75.986

6 axles 18.83 120,672 128 20,110 28 22.330 20.647

7 axles 17.87 128,996 116 18,428 27 17.856 16.162

8 axles 3.72 139,692 112 17,461 28 22.330 20.647

9 and more axles 5.71 130,472 120 18,206 27 17.856 16.162

Weighted average 25.464 23.789

150–200kips

7 axles 2.91 154,627 111 22,086 33 64.974 63.395

8 axles 1.71 161,226 105 20,132 32 54.260 52.655

9 axles 0.48 172,992 122 19,221 30 36.584 34.936

10 axles 0.27 188,433 126 18,843 31 45.187 43.559

11 axles 0.29 189,618 128 17,238 29 29.012 27.345

12 and more axles 1.24 193,318 120 14,425 26 14.498 12.797

Weighted average 48.995 47.377

.200kips

11 axles 0.92 216,333 127 19,667 33 64.974 63.395

12 axles 0.26 238,000 113 19,833 35 92.372 90.859

13 axles 0.15 241,986 127 18,616 33 64.974 63.395

14 axles 0.16 290,800 106 20,771 39 246.331 245.193

15 and more axles 0.67 417,174 106 23,122 47 980.262 978.503

Weighted average 365.607 364.012
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TABLE 12.21
Cost of Steel Bridge Damage due to Overweight Trucks, Disaggregate Approach, 85% Load Share, Option 1

Truck Description

Average

GVW (lbs)

Average

Spacing (in)

Average Axle

Load (lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost (2010$/

ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.748 2.001 7.013

5 axles 92,651 162 18,530 22 0.019 0.050 0.177

6 axles 100,845 132 16,808 23 0.040 0.108 0.378

7 or more axles 99,948 128 15,739 22 0.019 0.050 0.177

Weighted average 0.074 0.199 0.698

108–150kips

4 axles 117,556 61 26,239 41 4.587 12.279 43.032

5 axles 118,893 93 23,779 34 0.627 1.680 5.886

6 axles 120,672 128 20,110 28 0.181 0.484 1.695

7 axles 128,996 116 18,428 27 0.145 0.387 1.356

8 axles 139,692 112 17,461 28 0.181 0.484 1.695

9 and more axles 130,472 120 18,206 27 0.145 0.387 1.356

Weighted average 0.206 0.552 1.933

150–200kips

7 axles 154,627 111 22,086 33 0.526 1.408 4.933

8 axles 161,226 105 20,132 32 0.439 1.175 4.119

9 axles 172,992 122 19,221 30 0.296 0.793 2.777

10 axles 188,433 126 18,843 31 0.366 0.979 3.430

11 axles 189,618 128 17,238 29 0.235 0.628 2.202

12 and more axles 193,318 120 14,425 26 0.117 0.314 1.101

Weighted average 0.374 1.001 3.509

.200kips

11 axles 216,333 127 19,667 33 0.526 1.408 4.933

12 axles 238,000 113 19,833 35 0.748 2.001 7.013

13 axles 241,986 127 18,616 33 0.526 1.408 4.933

14 axles 290,800 106 20,771 39 1.994 5.336 18.701

15 and more axles 417,174 106 23,122 47 7.616 22.848 76.160

Weighted average 2.860 8.421 28.296
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TABLE 12.22
Cost of Steel Bridge Damage due to Overweight Trucks, Disaggregate Approach, 85% Load Share, 0–20 Years Age Group, Option 2

Truck Description

Average

GVW (lbs)

Average

Spacing (in)

Average Axle

Load (lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost (2010$/

ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.735 1.962 6.883

5 axles 92,651 162 18,530 22 0.006 0.011 0.047

6 axles 100,845 132 16,808 23 0.027 0.069 0.248

7 or more axles 99,948 128 15,739 22 0.006 0.011 0.047

Weighted average 0.061 0.160 0.568

108–150kips

4 axles 117,556 61 26,239 41 4.574 12.240 42.902

5 axles 118,893 93 23,779 34 0.615 1.641 5.756

6 axles 120,672 128 20,110 28 0.168 0.445 1.565

7 axles 128,996 116 18,428 27 0.132 0.348 1.226

8 axles 139,692 112 17,461 28 0.168 0.445 1.565

9 and more axles 130,472 120 18,206 27 0.132 0.348 1.226

Weighted average 0.193 0.513 1.803

150–200kips

7 axles 154,627 111 22,086 33 0.513 1.369 4.803

8 axles 161,226 105 20,132 32 0.426 1.137 3.989

9 axles 172,992 122 19,221 30 0.283 0.754 2.648

10 axles 188,433 126 18,843 31 0.353 0.940 3.301

11 axles 189,618 128 17,238 29 0.222 0.590 2.073

12 and more axles 193,318 120 14,425 26 0.104 0.275 0.971

Weighted average 0.361 0.963 3.380

.200kips

11 axles 216,333 127 19,667 33 0.513 1.369 4.803

12 axles 238,000 113 19,833 35 0.735 1.962 6.883

13 axles 241,986 127 18,616 33 0.513 1.369 4.803

14 axles 290,800 106 20,771 39 1.981 5.297 18.571

15 and more axles 417,174 106 23,122 47 7.603 22.809 76.030

Weighted average 2.847 8.382 28.167
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TABLE 12.23
Cost of Prestressed Concrete Bridge Damage due to Overweight Trucks, Disaggregate Approach, 85% Load Share, 0–20 Years Age
Group, Option 1

Truck Description

Average GVW

(lbs)

Average

Spacing (in)

Average

Axle Load

(lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost (2010$/

ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.767 2.054 7.199

5 axles 92,651 162 18,530 22 0.019 0.052 0.181

6 axles 100,845 132 16,808 23 0.041 0.111 0.388

7 or more axles 99,948 128 15,739 22 0.019 0.052 0.181

Weighted average 0.076 0.205 0.717

108–150kips

4 axles 117,556 61 26,239 41 4.709 12.605 44.174

5 axles 118,893 93 23,779 34 0.644 1.724 6.042

6 axles 120,672 128 20,110 28 0.186 0.497 1.740

7 axles 128,996 116 18,428 27 0.148 0.397 1.392

8 axles 139,692 112 17,461 28 0.186 0.497 1.740

9 and more axles 130,472 120 18,206 27 0.148 0.397 1.392

Weighted average 0.212 0.566 1.984

150–200kips

7 axles 154,627 111 22,086 33 0.540 1.445 5.064

8 axles 161,226 105 20,132 32 0.451 1.207 4.229

9 axles 172,992 122 19,221 30 0.304 0.814 2.851

10 axles 188,433 126 18,843 31 0.375 1.005 3.521

11 axles 189,618 128 17,238 29 0.241 0.645 2.261

12 and more axles 193,318 120 14,425 26 0.120 0.322 1.130

Weighted average 0.384 1.028 3.603

.200kips

11 axles 216,333 127 19,667 33 0.540 1.445 5.064

12 axles 238,000 113 19,833 35 0.767 2.054 7.199

13 axles 241,986 127 18,616 33 0.540 1.445 5.064

14 axles 290,800 106 20,771 39 2.046 5.478 19.197

15 and more axles 417,174 106 23,122 47 7.620 22.858 76.196

Weighted average 2.875 8.459 28.431
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TABLE 12.24
Cost of Prestressed Concrete Bridge Damage due to Overweight Trucks, Disaggregate Approach, 85% Load Share, 0–20 Years Age
Group, Option 2

Truck Description

Average

GVW (lbs)

Average

Spacing (in)

Average

Axle Load

(lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost

(2010$/ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.754 2.014 7.064

5 axles 92,651 162 18,530 22 0.006 0.011 0.047

6 axles 100,845 132 16,808 23 0.028 0.070 0.254

7 or more axles 99,948 128 15,739 22 0.006 0.011 0.047

Weighted average 0.063 0.164 0.582

108–150kips

4 axles 117,556 61 26,239 41 4.696 12.565 44.040

5 axles 118,893 93 23,779 34 0.631 1.684 5.908

6 axles 120,672 128 20,110 28 0.172 0.456 1.606

7 axles 128,996 116 18,428 27 0.135 0.357 1.257

8 axles 139,692 112 17,461 28 0.172 0.456 1.606

9 and more axles 130,472 120 18,206 27 0.135 0.357 1.257

Weighted average 0.198 0.526 1.850

150–200kips

7 axles 154,627 111 22,086 33 0.526 1.405 4.803

8 axles 161,226 105 20,132 32 0.437 1.166 3.989

9 axles 172,992 122 19,221 30 0.290 0.773 2.648

10 axles 188,433 126 18,843 31 0.362 0.965 3.301

11 axles 189,618 128 17,238 29 0.228 0.605 2.073

12 and more axles 193,318 120 14,425 26 0.107 0.282 0.971

Weighted average 0.371 0.988 3.380

.200kips

11 axles 216,333 127 19,667 33 0.526 1.405 4.803

12 axles 238,000 113 19,833 35 0.754 2.014 6.883

13 axles 241,986 127 18,616 33 0.526 1.405 4.803

14 axles 290,800 106 20,771 39 2.033 5.438 18.571

15 and more axles 417,174 106 23,122 47 7.606 22.818 76.030

Weighted average 2.861 8.419 28.167
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TABLE 12.25
Cost of Concrete Bridge Damage due to Overweight Trucks, Disaggregate Approach, 85% Load Share, 0–20 Years Age Group,
Option 1

Truck Description

Average

GVW (lbs)

Average

Spacing (in)

Average

Axle Load

(lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost (2010$/

ft./pass)

NHS-NI Bridge

Damage Cost (2010$/

ft./pass)

NNHS Bridge Damage

Cost (2010$/ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.740 1.982 6.946

5 axles 92,651 162 18,530 22 0.019 0.050 0.175

6 axles 100,845 132 16,808 23 0.040 0.107 0.374

7 or more axles 99,948 128 15,739 22 0.019 0.050 0.175

Weighted average 0.074 0.197 0.692

108–150kips

4 axles 117,556 61 26,239 41 4.544 12.162 42.621

5 axles 118,893 93 23,779 34 0.621 1.664 5.830

6 axles 120,672 128 20,110 28 0.179 0.479 1.679

7 axles 128,996 116 18,428 27 0.143 0.383 1.343

8 axles 139,692 112 17,461 28 0.179 0.479 1.679

9 and more axles 130,472 120 18,206 27 0.143 0.383 1.343

Weighted average 0.204 0.546 1.915

150–200kips

7 axles 154,627 111 22,086 33 0.521 1.394 4.886

8 axles 161,226 105 20,132 32 0.435 1.164 4.080

9 axles 172,992 122 19,221 30 0.293 0.785 2.751

10 axles 188,433 126 18,843 31 0.362 0.970 3.398

11 axles 189,618 128 17,238 29 0.233 0.622 2.181

12 and more axles 193,318 120 14,425 26 0.116 0.311 1.090

Weighted average 0.371 0.992 3.476

.200kips

11 axles 216,333 127 19,667 33 0.521 1.394 4.886

12 axles 238,000 113 19,833 35 0.740 1.982 6.946

13 axles 241,986 127 18,616 33 0.521 1.394 4.886

14 axles 290,800 106 20,771 39 1.975 5.285 18.522

15 and more axles 417,174 106 23,122 47 7.618 22.855 76.183
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TABLE 12.26
Cost of Concrete Bridge Damage due to Overweight Trucks, Disaggregate Approach, 85% Load Share, 0–20 Years Age Group,
Option 2

Truck Description

Average GVW

(lbs)

Average

Spacing (in)

Average

Axle Load

(lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost (2010$/

ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.728 1.944 6.818

5 axles 92,651 162 18,530 22 0.006 0.011 0.047

6 axles 100,845 132 16,808 23 0.027 0.068 0.246

7 or more axles 99,948 128 15,739 22 0.006 0.011 0.047

Weighted average 0.061 0.159 0.563

108–150kips

4 axles 117,556 61 26,239 41 4.531 12.124 42.493

5 axles 118,893 93 23,779 34 0.609 1.625 5.702

6 axles 120,672 128 20,110 28 0.166 0.441 1.551

7 axles 128,996 116 18,428 27 0.130 0.345 1.215

8 axles 139,692 112 17,461 28 0.166 0.441 1.551

9 and more axles 130,472 120 18,206 27 0.130 0.345 1.215

Weighted average 0.191 0.508 1.787

150–200kips

7 axles 154,627 111 22,086 33 0.508 1.356 4.757

8 axles 161,226 105 20,132 32 0.422 1.126 3.952

9 axles 172,992 122 19,221 30 0.280 0.747 2.623

10 axles 188,433 126 18,843 31 0.349 0.931 3.270

11 axles 189,618 128 17,238 29 0.220 0.584 2.053

12 and more axles 193,318 120 14,425 26 0.103 0.273 0.962

Weighted average 0.358 0.953 3.348

.200kips

11 axles 216,333 127 19,667 33 0.508 1.356 4.757

12 axles 238,000 113 19,833 35 0.728 1.944 6.818

13 axles 241,986 127 18,616 33 0.508 1.356 4.757

14 axles 290,800 106 20,771 39 1.962 5.247 18.394

15 and more axles 417,174 106 23,122 47 7.606 7.629 76.055

Weighted average 2.844 3.658 28.131
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TABLE 12.27
Cost of Bridge Damage due to Overweight Trucks, Semi-aggregate Approach, 85% Load Share, Option 1

Truck Description

Average

GVW (lbs)

Average

Spacing (in)

Average

Axle Load

(lbs)

Equivalent

Load (HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost (2010$/

ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.760 2.056 7.219

5 axles 92,651 162 18,530 22 0.019 0.052 0.182

6 axles 100,845 132 16,808 23 0.041 0.111 0.389

7 or more axles 99,948 128 15,739 22 0.760 2.056 7.219

Weighted average 0.220 0.595 2.089

108–150kips

4 axles 117,556 61 26,239 41 4.667 12.614 44.299

5 axles 118,893 93 23,779 34 0.638 1.725 6.060

6 axles 120,672 128 20,110 28 0.184 0.497 1.745

7 axles 128,996 116 18,428 27 0.147 0.397 1.395

8 axles 139,692 112 17,461 28 0.184 0.497 1.745

9 and more axles 130,472 120 18,206 27 0.147 0.397 1.395

Weighted average 0.210 0.567 1.990

150–200kips

7 axles 154,627 111 22,086 33 0.535 1.446 5.078

8 axles 161,226 105 20,132 32 0.447 1.207 4.241

9 axles 172,992 122 19,221 30 0.301 0.814 2.859

10 axles 188,433 126 18,843 31 0.372 1.006 3.531

11 axles 189,618 128 17,238 29 0.239 0.646 2.267

12 and more axles 193,318 120 14,425 26 0.119 0.323 1.133

Weighted average 0.381 1.029 3.613

.200kips

11 axles 216,333 127 19,667 33 0.535 1.446 5.078

12 axles 238,000 113 19,833 35 0.760 2.056 7.219

13 axles 241,986 127 18,616 33 0.535 1.446 5.078

14 axles 290,800 106 20,771 39 2.028 5.482 19.251

15 and more axles 417,174 106 23,122 47 7.619 22.862 76.217

Weighted average 2.870 8.461 28.451
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TABLE 12.28
Cost of Bridge Damage due to OW Trucks, Semi-aggregate Approach, 85% Load Share, Option 2

Truck Description

Average

GVW (lbs)

Average

Spacing (in)

Average

Axle Load

(lbs)

Equivalent Load

(HS)

Interstate Bridge

Damage Cost

(2010$/ft./pass)

NHS-NI Bridge

Damage Cost

(2010$/ft./pass)

NNHS Bridge

Damage Cost (2010$/

ft./pass)

80–108kips

4 axles 95,650 71 23,940 35 0.749 2.011 7.111

5 axles 92,651 162 18,530 22 0.006 0.011 0.047

6 axles 100,845 132 16,808 23 0.028 0.070 0.255

7 or more axles 99,948 128 15,739 22 0.749 2.011 7.111

Weighted average 0.207 0.553 1.961

108–150kips

4 axles 117,556 61 26,239 41 4.667 12.546 44.335

5 axles 118,893 93 23,779 34 0.627 1.681 5.947

6 axles 120,672 128 20,110 28 0.171 0.456 1.616

7 axles 128,996 116 18,428 27 0.134 0.356 1.265

8 axles 139,692 112 17,461 28 0.171 0.456 1.616

9 and more axles 130,472 120 18,206 27 0.134 0.356 1.265

Weighted average 0.197 0.525 1.862

150–200kips

7 axles 154,627 111 22,086 33 0.523 1.403 4.962

8 axles 161,226 105 20,132 32 0.435 1.165 4.121

9 axles 172,992 122 19,221 30 0.289 0.772 2.734

10 axles 188,433 126 18,843 31 0.360 0.963 3.409

11 axles 189,618 128 17,238 29 0.226 0.604 2.140

12 and more axles 193,318 120 14,425 26 0.106 0.282 1.002

Weighted average 0.368 0.986 3.491

.200kips

11 axles 216,333 127 19,667 33 0.523 1.403 4.962

12 axles 238,000 113 19,833 35 0.749 2.011 7.111

13 axles 241,986 127 18,616 33 0.523 1.403 4.962

14 axles 290,800 106 20,771 39 2.021 5.429 19.190

15 and more axles 417,174 106 23,122 47 7.606 22.820 76.082

Weighted average 2.858 8.417 28.334
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given the paucity of past studies on the load and non-
load split of bridge damage, no specific split was used;
instead, the results were presented for each of three
scenarios regarding the split: 100%–0%; 85%–15%; and
25%–75%. This was done for each of the three levels of
analysis aggregation and each of the three bridge
material types.

13. SUMMARY AND CONCLUSIONS

13.1 Summary

The present study investigated the costs of bridge
damage due to overweight trucks. A truck is considered
to be overweight when it has a GVW above the legal
limit of 80,000 lbs. The damage it causes can be
considered as a function of its axle spacing and number
of axles. As such, the FHWA vehicle classes were
correlated to AASHTO’s vehicle classes (which are a
better reflection of damage potential). This was done on

the basis of the modified equivalent vehicle (MEV)
model developed in this study. Then life-cycle cost
analysis was used to estimate the bridge life-cycle cost
for each bridge family. The bridge damage cost due to
overweight trucks was estimated using the incremental
cost approach that estimates the cost of bridge damage
to vehicle classes based on their configurations and
their average frequency of using the bridge. VMT was
used as the cost allocator because it could represent the
frequency of usage of the bridge, for each vehicle class.

For the damage cost estimation purposes, the bridges
in this study were considered to be designed in a
repetitive manner based on the highest vehicle load
available. Incremental designs were performed and cost
functions were developed based on the AASHTO
design vehicles. Each FHWA vehicle weight group
was classified into an equivalent AASHTO loading
using the modified equivalent vehicle model, which is
based on GVW, axle loading, and axle spacing. The

TABLE 12.29
Cost of Bridge Damage due to OW Trucks, Aggregate Approach, 85% Load Share

Truck Description % of Volume

Average GVW

(lbs)

Average

Spacing (in)

Average Axle

Load (lbs)

Equivalent Load

(HS)

Option 1: Total

Truck Weight

Bridge Damage

Cost (2010$/mi)

Option 2: Excess

Truck Weight

Bridge Damage

Cost (2010$/mi)

80–108kips

4 axles 2.58 95,650 71 23,940 35 314.063 308.921

5 axles 12.71 92,651 162 18,530 22 7.907 2.020

6 axles 17.32 100,845 132 16,808 23 16.932 11.067

7 or more axles 7.88 99,948 128 15,739 22 7.907 2.020

Weighted average 31.268 25.438

108–150kips

4 axles 0.40 117,556 61 26,239 41 1927.226 1926.008

5 axles 0.62 118,893 93 23,779 34 263.617 258.351

6 axles 18.83 120,672 128 20,110 28 75.923 70.201

7 axles 17.87 128,996 116 18,428 27 60.709 54.951

8 axles 3.72 139,692 112 17,461 28 75.923 70.201

9 and more axles 5.71 130,472 120 18,206 27 60.709 54.951

Weighted average 86.579 80.883

150–200kips

7 axles 2.91 154,627 111 22,086 33 220.913 215.544

8 axles 1.71 161,226 105 20,132 32 184.483 179.026

9 axles 0.48 172,992 122 19,221 30 124.385 118.782

10 axles 0.27 188,433 126 18,843 31 153.635 148.102

11 axles 0.29 189,618 128 17,238 29 98.640 92.973

12 and more axles 1.24 193,318 120 14,425 26 49.295 43.508

Weighted average 166.585 161.083

.200kips

11 axles 0.92 216,333 127 19,667 33 220.913 215.544

12 axles 0.26 238,000 113 19,833 35 314.063 308.921

13 axles 0.15 241,986 127 18,616 33 220.913 215.544

14 axles 0.16 290,800 106 20,771 39 837.526 833.657

15 and more axles 0.67 417,174 106 23,122 47 3332.891 3326.910

Weighted average 1243.064 1237.642
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results were used to incrementally assign bridge damage
costs to each vehicle class.

The studied bridges were classified by material type:
steel, prestressed concrete, or concrete. Each bridge
material type was also sub-classified into four different
age groups: 0 to 20 years, 21 to 35 years, 36 to 55 years,
and 56 to 70 years.

Life-cycle cost analysis was used to estimate the full
bridge cost. Allocating expenditures based on individual
bridge projects activities (bridge replacement, deck
rehabilitation, and deck replacement) was considered
unsuitable for the present study because doing so fails to
mimic the entire schedule of bridge maintenance,
rehabilitation, and replacement strategies from a practical
standpoint. Furthermore, bridges are designed for con-
tinual replacement/reconstruction after several decades, to
perpetuity; hence, using individual activity expenditure
could result in under estimating or overestimating the true
cost of bridge activities over its life cycle.

The present study pertains to overweight trucks.
Thus, the results presented do not pertain to truck
weights 80,000 lbs or lower. The total cost allocated to
a vehicle class was calculated as the sum of its cost
responsibilities; and the bridge damage cost per over-
weight vehicle class was computed as the cost
responsibility divided by the average truck volume that
typically uses the bridge.

The bridge damage cost in the present study was
estimated for two alternative permit fee options.
Option 1 is for the damage caused by the entire load
of an overweight vehicle; in other words, a vehicle
with GVW exceeding 80,000 lbs. Option 2 is for the
damage caused by the overweight portion only of an
overweight vehicle.

In order to issue a permit that is efficient, effective,
and equitable, considerations must be given to the full
information on the bridges (material type, age, and
dimensions) and overweight truck (GVW and axle
configurations). Three approaches were considered:
disaggregate, semi-disaggregate, and aggregate. The
merits and demerits for each approach were also
discussed. In the disaggregate approach, the bridge
damage cost for each overweight truck was computed
based on complete information available on the bridges
and the overweight trucks. In the semi-disaggregate
approach, the bridge damage cost was computed at the
highway class level; and in the aggregate approach, the

bridge damage cost was charged for every mile of
highway driven by an overweight vehicle.

13.2 Conclusions

From the results of this study, approximately 22.7%
of the total bridge cost was found to be attributable to
overweight trucks. Furthermore, bridge damage cost
was shown to be a function not only of GVW, but also
of all three of the vehicle variables GVW, axle spacing,
and axle loads. Adopting a permit structure based on
GVW therefore would result in some vehicles signifi-
cantly underpaying. It should be noted that on the basis
of the results, all overweight trucks are currently
underpaying their bridge damage cost.

Three approaches for determining the damage cost
were developed in this study and any one of the three can
be implemented where the requisite data are available.
Of the three approaches, implementation of the disag-
gregate approach (for setting the permit fee) appears to
be the most efficient, effective, and equitable. Adopting
this approach will require the development of a software
capable of incorporating the required information to
facilitate the issuance of permits. Although the develop-
ment of the software is the best way to implement the
approach, it may take a number of years for that to be
completed. In the short term (one to three years), the
aggregate approach bridge damage cost can be con-
sidered and implemented based on the GVW and axle
configurations. The bridge damage costs were estimated
for two scenarios based on load and non-load share of
bridge cost. The scenarios were considered due to the
unavailability of load/non-load splits from past studies.

13.3 Future Work

This study provides a robust framework for estimat-
ing bridge damage cost due to overweight trucks. In the
course of the study, an assumption regarding the load
and non-load split was made. This could be verified or
refined in future research. Such a study can illuminate
further the issues regarding the nature of bridge
deterioration in response to heavy traffic loads and
the environment, as well as any interactions therein,
and thus could introduce further equity in the bridge
damage cost estimation process and permit fees for
overweight trucks.
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PART III. APPENDIX

Figure III.A.1 Computed critical moments of overweight trucks.
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Figure III.A.2 List of permits and fees for Indiana. (Source: (173).)
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Figure III.A.3 Bridge damage cost for HS20–HS30: option 1.
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Figure III.A.4 Bridge damage cost for HS31–HS40: option 1.
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Figure III.A.5 Bridge damage cost for HS41–HS50: option 1.
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Figure III.A.6 Bridge damage cost for HS20–HS30: option 2.
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Figure III.A.7 Bridge damage cost for HS31–HS40: option 2.
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Figure III.A.8 Bridge damage cost for HS41–HS50: option 2.
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Figure III.A.9 Selected study bridges: 1–59.

177Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/01



Figure III.A.10 Selected study bridges: 60–116.
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Figure III.A.11 Selected study bridges: 116–172.
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Figure III.A.12 Selected study bridges: 173–230.
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Figure III.A.13 Selected study bridges: 231–290.
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PART IV. ENFORCEMENT

14. INTRODUCTION

The purpose of this part of the report is to examine
the overweight enforcement issues in the state of
Indiana. Ideally, the study should cover all enforcement
efforts spanning the entire range of roadway functional
classes in the state. However, due to data constraints,
only the major roadways, particularly, the National
Highway System (see Part IV Appendix B), were
considered. The first chapter of this part of the report
discusses the history and organization of traffic law
enforcement in Indiana, and briefly presents a snapshot
of traffic patterns in the state. The second chapter
focuses on reviewing the overweight truck enforcement
efforts of surrounding states. The third chapter
addresses the enforcement activities specific to the state
of Indiana, including a description of historical efforts,
physical facilities, and mobile enforcement. Chapter 16
makes recommendations for enhancing the capability of
the Indiana truck weight monitoring system, and thus
identifies a numbers of locations for proposed new static
weigh stations, virtual weigh stations, and weigh-in-
motion (WIM) systems. This is accompanied by
discussions on future truck inspections, inspection
buildings, federal funding for inspections, and the
correlation between safety and weight violations. This
part of the report concludes with a discussion of possible
future technology-driven directions in vehicle monitor-
ing to reduce the cost, yet increase the effectiveness, of
enforcing the overweight truck regulations.

14.1 General Background

The importance of establishing an effective system to
enforce vehicle weights cannot be overemphasized. This
is particularly the case for the state of Indiana, a logistics-
oriented state that is centrally situated in the continental
United States and thus experiences a significant amount
of truck traffic on its highways. Appropriately nick-
named the ‘‘Crossroads of America,’’ the state has a
highway network that serves Interstate freight in both
north-south and east-west directions and is a critical part
of a wider multimodal system that also includes rail, air,
and waterway modes thus enhancing the economy not
only of the state but also of the Midwest region and the
nation as a whole. Furthermore, the volume of truck
traffic in Indiana continues to increase annually as the
state’s efficient roadway infrastructure is reputed, at least
anecdotally, to provide carriers with a distinct competi-
tive advantage over other modes. Of all the states in the
union, Indiana ranks 2nd in through-truck ton-miles
(175), 5th in trailer and semi-trailer registrations (176),
7th in trucking employment (177), 12th in Interstate miles
(178), and 18th in highway bridges (179).

These statistics are not only a testament to the critical
role played by the highway transportation infrastruc-
ture in the socio-economic development of the state of

Indiana and the region but also underscore the need for
continual attention to preserving the investments made
by taxpayers in constructing, operating, and maintain-
ing such infrastructure. Consistent with the need for
preservation is the regulation, for purposes of safety
and system preservation, trucking operational charac-
teristics (speed, weights, widths, heights, etc.) using
federal and state legislation and policies. The state duly
realizes the need to monitor the use of its highways by
overweight vehicles so that it can protect the highway
infrastructure from premature and accelerated dete-
rioration of such assets through excess loading or
undue safety hazard through oversize loads. To do this,
the state police, and the state departments of revenue
and transportation, contiually monitor the operations
of overweight commercial vehicles. However, the state
finds itself in a Catch-22 situation: rigid enforcement of
trucking operating regulations will discourage eco-
nomic development and will thus defeat one of the
key purposes for which the highways are provided. In
striking a compromise, the state continues to maintain
a flexible policy where special permits are granted by
the state department of revenue to truck operators to
allow the latter to exceed the specified operational
restrictions albeit not to such extent that the highway
infrastructure longevity is compromised. Such flexibil-
ity helps the state to retain and attract heavy industry
including those that involve haulage of large loads.

14.2 History and Organization of Traffic Law
Enforcement in Indiana

14.2.1 History

In July 1921, the Indiana state legislature commis-
sioned a 16-man Motor Vehicle Police Force. This was
the first law enforcement agency in the state to have
statewide jurisdiction to enforce traffic laws; however,
they had rather limited authority and were only
authorized to enforce a non-standardized set of ‘‘rules
of the road’’ and a handful of other motor vehicle laws.
In 1933, this agency evolved into the Indiana State
Police and in July 1935, the first formal academy was
established to train state troopers (180). The Indiana
State Police is also renowned for another first: it was
the first law enforcement agency in North America to
have authorized the use of the ‘‘Drunk-o-meter’’, a
chemical test to determine levels of alcohol intoxication
(this equipment was developed in 1938, towards the end
of the prohibition era, by Dr. Rolla Harger, a professor
at Indiana University). In 1954, Indiana State Police
Captain Robert F. Borkenstein, in collaboration with
Dr. Harger, improved the device and named it the
Breathalyzer (181), which is still used today by police
agencies worldwide to assess alcohol impairment in
drunken driving offenses. This piece of traffic enforce-
ment history is evidential of the fact that the state of
Indiana has long been concerned with, and has had
pioneering roles in, issues regarding traffic law enforce-
ment in general.
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The branch of the Indiana State Police tasked with
overseeing commercial vehicle enforcement is aptly
named the Commercial Vehicle Enforcement (CVE)
division. The CVE division has a long and storied
history of working on a number of unique projects,
besides assisting new entrants to the commercial motor
vehicle industry understand the complex laws and
regulations by which they must abide. An example of
such a project is assisting the United States Department
of Agriculture in helping to halt the spread of the
emerald ash borer, an insect which has devastated
forests across the country, by scrutinizing trucks that
haul lumber-related products. Because of their efforts,
especially with respect to the enforcement of vehicle
weight and safety regulations, the CVE division received
the United States Department of Transportation’s
Motor Carrier Safety Assistance Program Leadership
Award in 2008, 2009, and 2010 (182).

14.2.2 Organization

The Indiana State Police is currently led by a
superintendent, whose command staff includes an
assistant superintendent who holds the rank of colonel,
and four deputy superintendents. Each member of the
command staff holds the rank of at least lieutenant
colonel, and manages four primary areas of responsi-
bility:

N Financial Management, including the Fiscal and Logistics
Divisions

N Support Services, including the Divisions of Criminal
Justice Data, Laboratory, and Records, and Public
Information Office

N Investigations which includes the Office of Professional
Standards, Training Division, and Criminal Investigation
Division;

N Enforcement, which includes the Commercial Vehicle
Enforcement Division, Human Resources Division, and
Operations Support Division.

Enforcement operations throughout the state are the
responsibility of separate north zone and south zone
commanders, which further oversee five separate areas,
each commanded by a captain. These areas are divided
into 14 districts, covering from four to 11 counties each,
and are individually commanded by a lieutenant (182).

In terms of job-related duties, the CVE division is
responsible for the following areas, several of which will
be described in detail later in the report:

N Fixed Scale Facility Operations

N Field Enforcement

N School Bus Inspection

N Compliance Review Squad

N New Entrant Squad

In addition to these, the CVE division maintains the
agency’s Superload Escort program, the Motor Carrier
Safety Assistance Program, SafetyNet, and the non-
division Commercial Vehicle Inspection programs.

14.3 Overall Traffic Patterns in Indiana

Indiana has an extensive network of Interstate, U.S.,
and state routes which provide truck access to various
commercial centers across the state. In 2009, Indiana
had 95,680 miles of public highways; these include
approximately 11,500 miles of state highways, of which
1,171 miles are Interstates (183). That year, a total of
76,628 million vehicle-miles were travelled on Indiana
highways (184); of this, a weighted average of all
highway vehicle-miles traveled (VMT) shows that
approximately 5% of travel was by combination trucks
(185). Indiana’s Interstate highway system, on which
approximately 30% of VMT is by combination trucks,
serves as the backbone for heavy truck movement
throughout the state. The Interstate system comprises
six major routes: I-80/90, I-70, I-74, and I-64 (which run
from east to west), and I-65 and I-69 (which run from
south to north). Indianapolis serves as the hub of this
network of highways: in addition to the I-465 beltway,
four other Interstate routes pass through the city.
Indiana also has a number of U.S. highways and state
roads connecting its major population centers, roughly
aligned in what can generally be described as an east-
west and north-south grid of highways. Major U.S.
highways (US) and state roads (SR) include US 27, US
31, US 41, US 231, US 421, SR 37, and SR 3, all of
which generally run north-south, and US 24, US 25, US
30, US 50, and SR 46, which run east-west (183).

Figure 14.1 graphically compares the annual average
daily traffic (AADT) and annual average daily truck
traffic (AADTT) on Indiana’s highway functional
classes. The figure suggests that there is marked
difference in the level of traffic loading across the
major highway classes, as is to be expected. As was
discussed briefly in Part II of this report (pavement
damage cost estimation) there are a number of
explanations for this trend; Interstates have superior

Figure 14.1 Traffic volume by functional class.

183Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/01



geometric standards to other highway classes, and their
limited accessibility, higher mobility, and general safety
are preferred by heavy vehicle operators, especially for
long-distance travel.

An examination of the traffic volume across specific
routes yields further interesting observations. In a
similar pattern, certain Interstate segments have sig-
nificantly higher truck traffic than others (Figure 14.2).
Of these highways, Interstate 80/90 in the northern part
of Indiana is clearly the most highly trafficked. Other
Interstates with considerably high truck traffic (ADTT
greater exceeding 10,000) are I-465, I-94, I-65, I-70, I-
74, I-69, and I-64. For non-Interstate highway routes,
shown in Figure 14.3, a comparable trend was
observed: certain routes have high truck traffic and
others have relatively low truck traffic. Of the non-
Interstate highways, SR 912 had the heaviest truck
traffic. These wide variations in pavement loading
patterns demand that, for future effective studies
related to highway investment, it may be prudent to
classify pavement segments not only on the basis of

surface type or functional class but also on the basis of
traffic loading.

AADT and AADTT are the average daily number of
total vehicles and trucks, respectively, passing a specific
road segment, and are obtained by dividing the total
yearly vehicle/truck traffic counts by 365 days (total
number of days in a year). The Indiana Department of
Transportation (INDOT) utilizes 114 continuous traffic
counters (CTCs) across the state; these collect data on
traffic speed and volume on a non-stop, year-round
basis. Of the 114 CTC sites, 50 are also currently
equipped with weigh-in-motion (WIM) technology to
collect truck weight data–the concept of WIMS in
improving CVE activities and efficiency will be
discussed in a later section. Also, INDOT has a
coverage count program that utilizes 30,000 temporary
count locations on a three-year cycle. At coverage
count locations, at least 48 hours of traffic data are
collected and subsequently used to estimate AADT on
the basis of adjustment factors (axle, weekday, and
seasonal) developed from CTC-generated data. As part

Figure 14.2 Annual average daily truck traffic (AADTT) on Indiana Interstate routes, 2010.

Figure 14.3 Annual average daily truck traffic at Indiana U.S. highway and state routes, 2010.
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of this process, INDOT classifies all vehicles into 13
different categories, depending upon the axle spacing
and number of axles; vehicles in Classes 4 through 13,
as per the FHWA classification system (see Part IV
Appendix A), are counted as commercial vehicles. For
the purpose of developing schedules for long-term
rehabilitation and maintenance, traffic loading is
projected using the most recent AADT and AADTT.

15. THE STATE OF PRACTICE

15.1 Enforcement in Surrounding States

As part of the effort to assess the issues associated with
overweight commercial vehicle enforcement in the state of
Indiana, a brief survey was conducted of adjacent
Midwestern states (i.e., Illinois, Kentucky, Michigan,
and Ohio) in order to gage the level of their enforcement
activities. This survey was primarily undertaken by
examining the annual reports of the respective state police
agencies for information relating to truck violations and
patrol staffing, as well as by contacting individuals in
FHWA’s Freight Management & Operations office. In
addition, review was made of a study conducted by Straus
and Semmens (186) that supplied critical information
otherwise not available to this research team at the time
of the report preparation. The results are presented for
each individual state in the paragraphs below.

One of the weight enforcement tools discussed across
multiple states below is the PrePass inspection system.
Utilized by a number of states in the Midwest and
around the country, this technology, which was
developed in the 1990s through the FHWA’s Heavy
Vehicle Electronic License Plate (HELP) program,
allows trucks equipped with proprietary transponders
to bypass specific weighing and inspection stations. The
credentials and safety record of participating carriers
are verified with state and federal agencies prior to
enrollment. Also, tools including as WIM scales are
increasingly being used, in conjunction with randomly-
selected spot checks, to ensure that trucks remain in
compliance. Carriers in the program are charged a fee
for participation which helps to offset the cost of
maintaining PrePass facilities. Currently, there are 31
states with at least one facility that participates in the
PrePass program, and over 400,000 trucks nationwide
have enrolled (187,188). Additional details relating to
PrePass and its use in Indiana commercial motor
vehicle enforcement will be discussed in the recommen-
dations chapter of this report.

15.1.1 Illinois

The state of Illinois maintains an extensive network
of static weigh stations in order to effectively enforce
state and federal laws for overweight vehicles, with a
total of 35 stations located on highways throughout the
state. Of these thirty-five (35) stations, twenty-six (26)
are located on Interstate highways, eight (8) are located
on U.S. highways, and one (1) is located on an Illinois
state route (189). This distribution of stations reflects

the prevailing tendency in Illinois for overweight trucks
to travel on a mix of Interstate and intrastate routes
(186).

The spatial distribution of the static weigh station
network in Illinois is such that a number of stations are
located on major highways at the state borders (known
as the ‘‘ports of entry’’), as well as on various highway
routes that traverse the interior parts of the state.
Approximately 40% of all commercial trucks travelling
on Illinois highways are weighed at these ports of entry,
where Commercial Vehicle Enforcement Operators
(CVEOs) typically staff the facilities for two 8-hour
shifts daily. For those trucks that are not weighed at the
ports of entry or other static weigh stations, a system of
mobile enforcement is also implemented across the
state. This mobile enforcement consists of patrol
officers with portable scales working approximately
249,600 hours annually. In conjunction with the weigh
stations, this force is responsible for the 45,000 trucks
that are weighed on Illinois highways annually
(186,190).

With respect to trucks that are found to be in
violation of weight restrictions, data from the Illinois
State Police suggest that the violation rate for over-
weight trucks is approximately 27.1% of all commercial
vehicles weighed, or just over 12,000 trucks per year. Of
these violators, the average excess weight over the
80,000 lb load limit has been found to be approximately
6,000 lbs, a level that is generally consistent with the
situation at other states (186).

15.1.2 Kentucky

Information from the FHWA shows that as of 2011,
the network of static enforcement facilities in Kentucky
consists of 14 static weigh stations, 600 portable scales,
5 semi-portable scales, and 14 WIM facilities (191). The
static weigh stations appear to be interspersed through-
out the state rather than concentrated at the ports of
entry, and 10 of them are compliant with PrePass
infrastructure (187).

Available literature suggests that the Kentucky State
Police has been particularly aggressive over the past
several years in commercial vehicle enforcement,
especially with respect to overweight vehicle violations.
One measure of effectiveness, the percentage of weighed
coal trucks that are overweight (coal trucks constitute a
significant portion of commercial truck traffic in
Kentucky), shows that the violation rate decreased
from 77% in 2004 to just under 3% in 2006. However,
one should note that this measure can only be
compared across years within Kentucky; differences in
the way that vehicles are weighed between different
states make it difficult to draw meaningful conclusions
from such statistics from one state to another, and may
lead to erroneous inferences on the effectiveness of
enforcement activities. As a case in point, it has been
reported that the vehicle out-of-service rate for
Kentucky, a measure by which the effectiveness of
roadside inspections can be assessed, was 15.48% in
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2006, somewhat below the national average of 22.89%
(192).

Table 15.1 presents a selection of key inspection and
weight enforcement statistics from the Kentucky State
Police CVE division for the years 2006–2011.
Additionally, it was found that the top reasons for
commercial vehicles being removed from Kentucky
highways include issues pertaining to medical certificate
errors, drivers operating their vehicles beyond the
maximum number of allowed operating hours, and
errors with recording driving hours in the vehicle log
(193,194).

15.1.3 Michigan

The Research Team for the present study contacted
the Michigan DOT and the Michigan State Police
office, and was directed to submit requests for
information pertaining to commercial vehicle enforce-
ment through the office’s Freedom of Information Act
website. As of the time of the report preparation, the
Research Team had not received any responses. As
such, detailed data pertaining to the state’s commercial
vehicle enforcement efforts were not available to
document in the present report. The information
presented below was obtained from online and other
sources.

An online search for information on commercial
vehicle enforcement in Michigan shows that the
network of physical enforcement facilities around
Michigan consists of 21 static weigh stations. Of these,
16 are located on Interstate highways, with the
remainder on U.S. highway routes (195). The weigh
stations seem to be well distributed throughout the state
but only two of them are compliant with PrePass
infrastructure (187).

15.1.4 Ohio

In Ohio, the physical enforcement system consists of 16
weigh stations. Thirteen (13) of these facilities are located
on Interstate highways, and the remaining three are on
U.S. routes (196). These stations are staffed by employ-
ees in 8-hour shifts, and are responsible for weighing
approximately 3% of all commercial trucks at the state’s
ports of entry. According to the Ohio State Patrol, most
overweight truck violations occur on intrastate routes,

and the violations occur predominantly during the
daytime, although this is likely correlated significantly
with the hours during which the weigh stations are
staffed (186). Ten (10) of the weigh station facilities in
Ohio are compatible with PrePass infrastructure,
including one WIM facility (187).

In 2011, Ohio State Patrol officers conducted nearly
80,000 inspections of commercial vehicles, resulting in
approximately 20% of the inspected trucks being placed
out of service. Table 15.1 presents current statistics for
commercial vehicle weight enforcement in Ohio; in
2011, the weight violation rate at static scales (plat-
forms) was approximately 0.2%, while the violation
rate at portable scales was 80.4% (197). This appears to
be logical, as those truck drivers who avoid the static
scales are likely to do so on purpose due to weight
violations, and will typically be apprehended by mobile
enforcement officers instead.

15.2 Commercial Vehicle Enforcement in Indiana

15.2.1 Overview

Besides the previously discussed assignments, the
principal directives of the Indiana State Police CVE
division are to: (1) reduce the number of commercial
vehicle-related crashes in the state of Indiana, and (2)
reduce the pavement and bridge damage by heavy
weight vehicles using Indiana’s highways. In addition,
the division maintains a host of other duties, including
commercial driver’s licensing, dyed fuel enforcement,
hazardous materials inspection, and safety inspections
of commercial vehicles. Because the CVE division is
responsible for preventing damage from overweight
vehicles on all of Indiana’s highways, they must adapt
their techniques to a variety of conditions; as such, this
agency makes use of a number of tools, principally
portable and static truck scales, in the course of their
duties (182).

In order to maintain consistency of enforcement
operations across the entire state, the CVE division abides
by a stringent set of regulations when determining
whether a commercial vehicle is oversize or overweight.
In order to be considered legal, the truck dimensions and
weight must not exceed the following criteria, adapted
from the Federal Highway Administration (198):

TABLE 15.1
Kentucky Truck Weight Enforcement & Inspection Statistics. Courtesy of Kentucky State Highway Police (194).

Year

Oversize Violation

(Current Year)

Overweight Violation

(Current Year)

Vehicles Weighed

(Fixed platform)

Vehicles Weighed

(WIM)

Vehicles Weighed

(Portable)

Vehicles Weighed

(Semi-portable)

2006 447 4,945 71,686 7,543,389 3,534 8,583

2007 421 2,544 75,337 6,304,357 5,652 6,865

2008 465 2,957 96,228 5,758,643 5,029 3,364

2009 691 3,500 100,717 4,669,900 4,782 1,832

2010 588 3,354 119,421 4,620,598 4,286 455

2011 721 2,650 103,191 4,655,087 5,001 1,559
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N 13 feet 6 inches in height; or

N 8 feet 6 inches in width; or

N 40 feet in length for a single vehicle; or

N 60 feet in length for a two-vehicle combination. NOTE: If
a two-vehicle combination is connected by a fifth wheel

hook-up, there is not an overall length limit, but the trailer

and load length must not exceed 53 ft.

N 80,000 pounds gross vehicle weight (GVW); or

N 12,000 pounds on the steering axle; or

N 20,000 pounds on a single axle; or

N 34,000 pounds on a tandem axle; or

N 800 pounds per inch of rim width and subject to the
above axle weights. NOTE: Regardless of the individual

axle weights, the GVW of the truck must not exceed

80,000 pounds.

15.2.2 Historical Commercial Vehicle Enforcement
Patterns

Historically, INDOT has always monitored both
overweight and oversize trucks. The enforcement
pattern over the last decade is presented in Table 15.2
and shown graphically in Figure 15.1. Note that the
category of ‘‘measured trucks’’ includes those commer-
cial vehicles which undergo a complete physical safety
inspection, pursuant to Federal Motor Carrier Safety
Administration (FMCSA) regulations; the measure-
ment of the vehicle’s physical dimensions is only one
step in this process (199).

Overall, these patterns indicate that over the past
decade, patrol hours have exhibited a trend of
remaining steady to slightly increasing, while the total
numbers of trucks weighed and measured (inspected)
have decreased precipitously (with the exception of
2010—the reason for this increase is unclear). The
reasons for these decreases are not definitively known,
although it may be related to budget reductions in
recent years, which have decreased the time that static
weigh stations are staffed—if there is no paid staff
present at the weigh station, commercial vehicles
cannot be weighed or ticketed for overweight loads;
this will be discussed further in a later section.

Additionally, the decrease in trucks weighed and
measured may be due to the allocation of commercial
vehicle enforcement resources on Indiana highways. A
2006 survey to INDOT indicated that the majority of
overweight truck violations occur on the I-80/I-90/I-94
corridor in the northern part of the state; data on the
allocation of enforcement resources by highway district

and/or route was not available for this report, but if the
Indiana State Police is focusing its commercial vehicle
enforcement efforts on other routes throughout the
state with greater numbers of officers, it is possible that
the related enforcement statistics would see a subse-
quent decrease. This survey also indicated that 100% of
commercial vehicles are weighed on WIM stations at
the state’s ports-of-entry, suggesting that the aforemen-
tioned numbers do not include these physical facilities
(186). Also, in 2010, 4,508 citations were issued to
commercial vehicles for weight violations, for a failure
rate of approximately 0.9% (182).

Figure 15.2 presents a distribution of the gross
vehicle weights for trucks that are ticketed or warned
by commercial vehicle enforcement officers. While this
figure only contains data for a single month, it suggests
a distinct trend in which the vehicles that are ticketed
are predominantly only a few thousand pounds over
the legal weight limit of 80,000 pounds; this suggests
that enforcement officers are less likely to allow for
any flexibility in the GVW, and that many commercial
carriers attempt to ‘‘sneak’’ a small amount of additional
weight onto their vehicles.

15.2.3 Enforcement through Static Weighing

15.2.3.1 Physical facilities for static weighing.
Indiana’s Commercial Vehicle Enforcement Division
makes use of 10 permanent scales, all of which are
located on Interstate highway routes in various
locations around the state. Of these static weigh
stations, three are presently not operational. The
detailed locations of these static weight enforcement
facilities are listed in Table 15.3, and shown graphically
in Figure 15.3. Scales 9 and 10 currently lack staffing,
while the fixed scales at site 7 suffer from structural
integrity problems. Figure 15.4 provides an example of
a static weight enforcement facility in operation with a
commercial vehicle.

In order to further effectively manage the high volume
of commercial trucks on Indiana highways, the majority
of the static weigh stations employ auxiliary WIM sorting
scales. Using vehicle information such as axle spacing,
axle weights and speed, any vehicle suspected of violating
weight limitations through a WIM scale is sent to a
certified static scale, while compliant vehicles are allowed
to continue travel without stopping. Additionally, seven
static weight enforcement facilities are currently equipped

TABLE 15.1
Ohio Truck Weight Enforcement Statistics. Courtesy of Ohio State Highway Police (197)

Number Change (+/2)

Current (2011) Last (2010) 3-Year Avg (2008–10) 2010 to 2011 3-yr Avg to 2011

Platform

weighing

Trucks weighed 2,950,368 3,058,932 3,792,553 2108,564 (24%) 2842,185 (222%)

Trucks overweight 6,079 5,120 7,018 959 (+19%) 2939 (213%)

Portable

weighing

Trucks weighed 4,354 4,841 5,662 2487 (210%) 21,308 (223%)

Trucks overweight 3,501 3,781 4,539 2280 (27%) 21,038 (223%)
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with infrastructure for the PrePass system (187).
Figures 15.5 and 15.6 demonstrate a sample placement
of these WIM facilities with respect to the static weight
enforcement stations.

Finally, as previously mentioned, although Indiana
currently has 12 static weigh enforcement facilities,
funding cuts over the past decade have severely limited,
or even completely eliminated the staffing at several
facilities, effectively removing them from the list of
available stations. The I-74 eastbound station at
Veedersburg, and the I-65 stations at Seymour are
completely unused, essentially rendering a west-north/
south corridor through the center of the state devoid of
full-time commercial vehicle weight enforcement, with
the exception of the limited number of trucks along this
route that are inspected by state troopers with portable
scales (Figure 15.7). Any recommendations for future
weigh stations operations, to be discussed later in the
report, must take cognizance of the potential of these
existing stations to effectively serve their intended
purpose.

In addition to weight enforcement, officers of the
Commercial Vehicle Enforcement Division are tasked
with inspecting vehicles for a number of safety and
length violations that would pose a hazard to other
vehicles on the highway. In order to conduct these
inspections, officers typically use inspection buildings
located on the premises of the static weight enforcement
facilities. However, currently only six of the seven
operational weigh stations have these buildings, mean-
ing that officers at the other two locations are unable to

conduct inspections during periods of inclement
weather; depending on the time of year, this can greatly
reduce the capacity of the enforcement officers in
conducting their duties. Figure 15.8 provides an illus-
tration of a typical inspection building located adjacent
to the main scale house at a static weigh station.

15.2.3.2 Staffing for static weighing. Of the 93
employees that are presently employed with the
Commercial Vehicle Enforcement Division, 49 are
permanently stationed at static weight enforcement
facilities, and are referred to as Motor Carrier
Inspectors.

General responsibilities. In general, the responsi-
bilities of Motor Carrier Inspectors are as follows:

N Check working order of scales prior to use

N Conduct inspections of applicable vehicles for safety
registration, proper operator papers, permits, documen-
tation and proper safety equipment

N Weigh trucks on permanent and/or portable scales

N Complete proper reports on each enforcement action
taken

N Set up portable scales in order to weigh trucks

N Testify in court

N Perform duties in conjunction with troopers to detect
motor carrier violations and/or to weigh trucks at
random on portable scales

N Ensure violator vehicles are properly secured

N Inform county prosecutors on motor carrier violations
and technicalities for preparation of trials

N Assist and inform trucking companies and motorist
regarding motor carrier laws

TABLE 15.2
Historical Enforcement Patterns in Indiana. Data Courtesy of Indiana State Police (182).

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

# of trucks measured 17,490 17,735 10,233 6,157 7,037 6,828 5,431 6,186 1,473 1,243 1,697

# of trucks weighed 463,150 488,350 797,319 770,998 423,080 377,184 374,156 271,906 226,701 203,939 480,080

Traffic patrol hours 335,585 332,140 325,896 293,275 271,324 285,705 282,032 321,257 431,692 457,950 424,908

Figure 15.1 Historical enforcement patterns in Indiana, 2001–2009. Data courtesy of INDOT (200).
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N Assist troopers and other police agencies with truck

enforcement problems

N Keep assigned equipment in condition pursuant to

Standard Operating Procedure

N Perform school bus inspections

N Submit daily and monthly reports

N Train, assist and supervise Motor Carrier Inspector

Trainees in performing the required tasks

N Participate in the Safety Audit Program as required

Staff daily schedules. A crucial factor in determin-
ing the effectiveness of the static weigh stations is the
hours during which motor carrier inspectors are
scheduled to be working. While the exact number of
hours varies by weigh station, Indiana traditionally uses
16-hour schedules for many of the facilities; this
typically consists of two 8-hour shifts (187). These
shifts often begin at 6:00AM and end at 10:00PM,
rendering the weigh station dormant at nighttime.

While this is sufficient for apprehending many inad-
vertent offenders of weight regulations (that is, those
trucks that unintentionally overload or accidentally set
their axle spacing incorrectly), it is not sufficient to
catch those carriers and drivers that deliberately violate
weight regulations by overloading their vehicles. These
drivers and carriers are typically informed about weigh
station staffing hours and regulations and thus often
modify their driving schedule such that they pass at the
weigh stations only during the late evening or early
morning hours when the stations are closed. As such,
any recommendations for staffing changes are these
facilities need to take due cognizance of such scheduling
disparities.

Staffing costs. In computing the costs for employ-
ing motor carrier inspectors at weigh stations across the
state, several criteria must be considered. These are
listed below. The amount indicated with each item
represents approximate costs that were made available
directly from the Indiana State Police Pay Matrix
Website (the specific values for different employee
levels can be found in Part IV Appendix C. Note that
these costs are not adjusted for inflation, as the exact
wage adjustment mechanism was unavailable from the
Indiana State Police at the time of this report.) (201,202):

N Annual salary 5 $46,768
N Cost of equipment necessary to perform duties 5 $47,876
N Cost of benefits 5 $15,901 (34% of annual salary)

N Cost of training necessary to perform duties 5 $65,000

Thus, based on these figures, the 49 motor carrier
inspectors result in a total annual cost of approximately
$8.6 million.

Figure 15.2 Gross vehicle weight violations at Indiana static weigh stations, August–September 2003.

TABLE 15.3
Static Weight Enforcement Stations in Indiana. Data Courtesy of
INDOT (200).

Scale Location Details

1 I-65 SB Lowell

2 I-94 WB Chesterton

3 I-94 EB Chesterton

4 I-69 SB Fort Wayne

5 I-70 WB Richmond

6 I-74 WB W. Harrison

7 I-65 NB Seymour Not operational

8 I-70 EB Terre Haute

9 I-65 SB Seymour Not operational

10 I-74 EB Veedersburg Not operational
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15.2.4 Resources for Mobile Enforcement

Besides permanent scales, portable scales (shown in
Figure 15.9) are used by commercial vehicle enforce-

ment officers to weigh commercial trucks and supple-
ment the permanent scales. In addition to being used
for vehicles that are pulled over for compliance checks,
portable scales are used to weigh overweight trucks
involved in accidents. However, since each set of scales
is actually multiple scales, they are more cumbersome
and time-consuming to use, and there is a greater risk
for inaccurate measurements compared with WIMs or
static scales.

Besides the motor carrier inspectors, the second
major branch of employment within the Commercial
Vehicle Enforcement Division is that of the state
troopers that patrol the highways. The most significant
difference between these commercial vehicle enforce-
ment officers and motor carrier inspectors is that the
former are allowed to carry firearms, in event that a
violent confrontation with a truck driver occurs. These
specialized officers, hired from the general pool of state
police offers, perform a number of specialized duties,
which are described below.

Note that portable scales are by far the slowest form
of vehicle weight measurement, because of the fact that
individual scales must be set up for each axle, and are
typically done so in less-than-ideal environmental
conditions (e.g., on the shoulder of a busy highway).

15.2.4.1 Physical facilities and staffing for mobile
enforcement. While members of the mobile section of
Indiana’s CVE division are necessarily free to operate in
any location around the state, a number of physical
facilities are available to assist them in the performance of
their duties. Similar to motor carrier inspectors, mobile
enforcement officers are able to direct commercial vehicle
operators to weigh at static weight facilities in order to
obtain a more definitive answer to whether or not a truck
is in violation of weight restrictions.

Additionally, mobile enforcement officers have
access to the state’s six inspection buildings, which are
located at various static weight facilities. While vehicle
inspections can take place on the side of the highway,
oftentimes safety and weather conditions necessitate an
inspection to occur in an enclosed facility. Finally,
mobile enforcement officers are allocated office space at
each district’s headquarters in order to more efficiently
perform various administrative functions.

Responsibilities. The Commercial Vehicle Enforce-
ment Division employs a total of 44 state troopers.
Although these officers undergo the same initial
training and maintain the same general responsibilities
as all Indiana State Police, they are additionally tasked
with the following items pursuant to the enforcement of
commercial vehicle laws and regulations:

N Weight enforcement

N Writing up crash reports at the crash scene

N Issuing warrants

N Conducting DUI patrols

N Working with the federal police force

N Answering phone calls at district offices

N Helping stranded motorists

N Making public appearances at schools, parades, etc.

Figure 15.3 Location of static weight enforcement stations in
Indiana as of December 2011.

Figure 15.4 Static weight enforcement facility in operation.
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The principal activity of these officers is weight
enforcement. This consumes 80% of their time in an
average work week. The remaining duties take up the
other 20% of time, and are more in keeping with the
general duties of all Indiana State Police officers.
Instead of being assigned to a specific static weigh
station, these officers spend their time driving and

Figure 15.5 A typical example of sequentially locating WIM and static weigh stations.

Figure 15.6 Typical WIM/PrePass transponder configuration.
Figure 15.7 Typical use of portable scales by commercial
vehicle enforcement officer.
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carrying out mobile commercial vehicle enforcement
with portable and semi-portable scales. If the troopers
suspect that a commercial vehicle is in violation of
safety, weight, or size regulations, they pull the truck
over on the side of the road and perform a field
inspection or weighing. As such, these officers carry
four portable scales at all times in their vehicles. Once
the scales are laid in position, each tire of the truck rolls
onto the scales, one axle at a time. The resulting
measurement could then serve as a basis for citing a
vehicle that is over the 80,000-pound weight limit
without a valid permit.

Coverage. The following calculations demonstrate
the annual coverage, on average, of a single commercial
vehicle enforcement state trooper:

N Indiana NHS Roadways 5 2,897 miles (including 1,171
miles of Interstate highways)

N 44 state troopers 5 188,642 miles/month provided by
Indiana State Police (203)

N 44 state troopers 5 2,263,704 miles/year (computed from
previous figure)

Thus,

Number of times that all troopers cover all NHS

roads in a year 5
2,263,704

2,897
~781

Number of times that one trooper covers all NHS

roads in a year 5
781

44
~18

On average, number of NHS miles covered by 1
trooper in a year 5 one trooper covers miles per

year
2,263,704

44
~51,448

Costs. According to Captain Wayne Andrews, an
assistant commander for the CVE division, the same
salary information can be used to approximate the costs
for commercial vehicle state troopers as for motor
carrier inspectors (203). Thus, the figures for salary,
benefits, equipment, and training from above still
apply. Based on these numbers, and an estimated
count of 44 troopers, the total annual cost for this
segment of the division is approximately $7.7 million.
This brings the total cost for staffing within the CVE
division to $16.3 million.

16. RECOMMENDATIONS

This chapter details a set of recommendations
pertaining to the static monitoring and mobile enforce-
ment, and truck inspections which are part of the
Indiana State Police CVE division. These recommenda-
tions will provide INDOT and the Indiana State Police
with a broad-level roadmap for future commercial
vehicle enforcement efforts, from which they can
perform further studies to assess different strategies
and impacts of implementing these recommendations.

16.1 Physical Facilities

16.1.1 Static Weigh Station Locations

Based on the earlier section of the report which
detailed the locations and capabilities of existing static
weight enforcement facilities, a number of additional
stations have been recommended for implementation
across the state. Although this report is meant to
provide general guidance only for the locations of these
stations (the final locations should be the subject of a
separate detailed study), the following factors were
considered in making the recommendations:

N Proximity to the Indiana state border.

N Truck traffic volumes.

N Ability to weigh incoming trucks before their detouring
to avoid a weigh station.

N Proximity to regions/industries which produce a signifi-
cant amount of truck traffic.

N Proximity to and capacity of nearby weigh stations.

On the basis of these factors, Table 16.1 lists the new
recommended weigh stations, along with any notes that
relate to the recommendation. A more detailed justifica-
tion for each recommendation is provided below:

Figure 15.8 Typical inspection building at static weight
enforcement facility.

Figure 15.9 Indiana State Trooper using a portable scale to
weigh a truck.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/01192



Detailed costs are not included in this report for all
recommended stations—rather, these should be the
subject of a separate, detailed engineering analysis for
each proposed location. The last weigh station con-
structed in Indiana, at Terre Haute in the late 1990s,
cost $13.5 million, and included the addition of a
significant amount of concrete pavement. Some cost
information will be provided on the location of the
Seymour station, but similarly-constructed new facil-
ities can easily approach the $15 to $20 million dollar
range per direction (204).

Interstate 64. In addition to the weigh stations that are
recommended for Interstate highways in the central and
northern portions of Indiana, it is recommended that a
permanent weigh station be constructed on a section of
Interstate 64 in the southwest section of the state. The
most significant reason for this recommendation is the
anticipation of heavy truck movements related to the
coal mining and processing industry that has developed
in this region. Figure 16.1 shows the distribution of coal
mining activity within Indiana, with an especially heavy
concentration of surface mining activity located along

TABLE 16.1
Recommended New Locations for Static Weigh Stations

Station Location Notes

1 I-64 EB Elberville New station construction

2 I-65 SB Remington Complement existing station at Lowell

3 I-65 NB & SB Seymour Reopen or replace existing unused facilities

4 I-69 NB Warren Adjacent to current weigh station on SB lanes

5 I-69 NB Washington New station construction on new I-69

6 I-74 EB Veedersburg Reopen existing station

Figure 16.1 Coal mining activity in Indiana. (Adapted from (205).)
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the I-64 corridor. Additional data from the Indiana Coal
Council indicates that approximately 86% of the coal
produced in Indiana is consumed within the state (205).
This implies that the vast majority of these heavy coal
trucks are traveling eastward on Indiana highways, in
order to supply the energy and industrial needs for the
rest of the state; as such, a static weigh station which
captures this traffic would ideally be situated east of the
coal producing region on a major transportation route,
such as I-64.

In order to further narrow down the list of candidate
locations at which a weigh station on I-64 should be
located, truck traffic information from the Indiana
DOT was analyzed for the corridor east of I-164. This
information shows an appreciable decrease in the
commercial vehicle traffic east of the I-64/US 231
interchange; this suggests that a significant amount of
truck traffic is entering or exiting the I-64 corridor at
this location. Thus, based on these findings, it is
recommended that a static weigh station be located in
the eastbound lanes of I-64, between the I-64/I-164
interchange and the I-64/US 231 interchange.

Interstate 65

Remington. This location should be considered for
a weigh station in the southbound lanes in order to
complement the existing facility further north near
Lowell. This would help monitor the increasing
amounts of truck traffic between the Chicago and
Indianapolis metropolitan areas; current estimates place
AADTT along this corridor at approximately 15,000,
and the volume of traffic may be expected to increase
significantly in the future. However, further studies with
more refined truck traffic projections should be
conducted before this recommendation is implemented.

Seymour. As discussed previously, the southbound
lanes on I-65 near Seymour are the current site of a
weigh station that has been unused for over a year, and
the station on the northbound lanes. In both cases, the
stations are unused and thus have fallen into disrepair;
they will require significant rehabilitation, or even
complete replacement, in order to restore them to
operational capacity. The following is a detailed cost
estimate for each side of I-65 at Seymour, based on a
cursory review of the facility needs; the cost informa-
tion comes primarily from direct interviews with
INDOT employee and former state trooper Guy
Boruff (204). The total estimated cost for each direction
is approximately $2.45 million, bringing the total cost
for both weigh stations to $4.9 million.

N New Scale: $500,000. Install a new 8096129 scale and
new pit. The existing scale and pit will be demolished.
New concrete walls will be placed to accommodate the
new scale, and new conduit will run to the basement of
the existing building for the electronics of the load cells.

N Refurbished Scale House: $100,000. The scale house has
been emptied and vacant for over a year. The scale house
needs to be refurbished in place or demolished and
moved to the east side of the ramp. It is desirable for
Indiana State Police to face the mainline while operating

the static scale. The current configuration does not allow
that option.

N Mainline Sorting System: $750,000. The mainline sorting
system will include WIMs, loops, variable message signs,
and will be tied to the scale house similar to the scale
bypass lanes at other scales. These items will be on the
highway mainline and will require additional signage for
trucks and passenger vehicles.

N Virtual Weigh Stations: $250,000 each. US50 west to
SR11 N is the bypass route used by trucks that seek to
avoid the existing weigh station. It is imperative to install
Virtual Weigh Stations along the bypass route to
discourage trucks from bypassing the weigh station.

N Inspection Barn: $500,000. Indiana State Police perform
inspections on trucks to ensure they meet minimum
mechanical standards. A simple yet safe inspection barn
will allow the performance of inspections year-round
regardless of weather conditions.

N Site Improvements: $200,000. As the new scales, loop
system, building refurbishment and inspection barn are
completed, site improvements such as new drainage
structures, sidewalks and pavement sections may need to
be addressed.

N Engineering: $150,000. Engineering for the project by a
consultant to provide engineering drawings for a proper
weighing system.

While these costs have been deemed accurate for the
Seymour location, they should not be considered
typical for new station construction. The particular
situation with Seymour is that a large amount of the
existing facility will be reused and/or rehabilitated,
including the installation of a mainline sorting system,
which will negate the need to purchase additional
ROW for the construction of a bypass lane. With a new
pavement, a new scale house, a high-end inspection
barn, and additional ROW purchases, construction
costs for a brand new station would likely exceed $15
million per direction (206).

Interstate 69
Warren. This location should be considered for a

weigh station in the northbound lanes, in order to
complement the existing weigh station on the southbound
lanes. A review of AADTT on I-69 reveals that the
majority of truck traffic travelling north towards Michigan
and Ohio originates in the direction of Indianapolis, rather
than Fort Wayne itself, or highways to the east of the city.
By placing this weigh station south of Fort Wayne,
Indiana State Police can avoid having to track vehicles
which bypass the weigh station by detouring east into
Ohio once they reach the I-469 beltway.

Evansville–Indianapolis extension. Plans are cur-
rently underway to extend Interstate 69 from its present
southern terminus in Indianapolis, in order to connect
with a short section of the highway to the southwest in
Evansville. The first three sections of this highway, near
Evansville, are expected to be functioning by October
2012 (207). Due to reduced pavement thickness as a
cost-saving measure, a weigh station along this corridor
would be useful in discouraging overweight truck travel
and thus preserving the highway condition. It is
recommended that a static weigh station and a WIM
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station be constructed along this section of highway on
the northbound lanes, perhaps near Washington, in
anticipation for large volumes of commercial truck
traffic that will travel to the northern and eastern parts
of the state. This highway route could also serve as an
alternate path for heavy coal trucks originating in
southwest Indiana; as such, a comprehensive engineer-
ing study should be conducted to ensure that the
proposed I-64 weigh station is not rendered redundant
or obsolete at a future date.

Interstate 74. It is recommended that the weigh
station on eastbound I-74 near Veedersburg be
evaluated for reopening. Currently, there is no station
for weighing commercial vehicles which enter the state
on I-74 from the west, resulting in a situation in which a
truck could theoretically travel across the entire state
without being weighed until it reaches the Indiana-Ohio
border. Furthermore, with the I-65 stations in Seymour
in disrepair, there is essentially no static station
enforcement of commercial trucks that enter the state
from Illinois on I-74 and exit to Kentucky on I-65, and
vice-versa.

In light of these gaps in enforcement, the condition of
the existing weigh station at Veedersburg should be
assessed, and the necessary funding should be acquired
to either refurbish and reopen the facility, or demolish it
and construct a new weigh station nearby.

16.1.2 Weigh-in-Motion (WIM) Stations

In addition to the recommendations above for static
weigh station construction, it is advised that a review be
undertaken of the existing WIM stations around the
state. For those static weigh stations that are not
currently preceded spatially by a WIM station, it is
recommended that WIM infrastructure (such as that
shown in Figures 16.2 and 16.3) be incorporated into
the mainline highway network in order to allow more
commercial vehicles to bypass the static scales. This will
reduce congestion at the static weigh stations and will
achieve savings in time and fuel usage for commercial
carriers and drivers.

An assessment of the effectiveness of WIMs to
accurately weigh commercial trucks is presented in
Figure 16.4. This comparison between the measures of
WIM and static weigh stations for the same vehicles
shows that the WIMS are suitable for an initial screening
tool of general truck traffic. In the majority of cases, the
WIMS measurement was equal to or greater than the
corresponding static scale measurement; thus, a certain
number of ‘‘false positives’’ for overweight vehicles might
be generated based on the WIM scales, which could then
be confirmed at the static weigh station. Perhaps more
importantly, the number of instances in which the WIM
measurement was less than that of the static scales is very
infrequent, and it appears that several outlying data
points visually skew the data; these could represent
unique axle configurations or some other confounding
factor. Furthermore, in instances where these weight
differences occurred, there was only one case where it
resulted in an overweight truck potentially being able to
bypass the static scales.

16.1.3 Virtual Weigh Stations & Screening Technology

Besides operating as a pre-screening tool in conjunc-
tion with static weight facilities, WIM stations can also
be combined with a host of software tools and other
digital enforcement mechanisms to form what are
known as ‘‘Virtual Weigh Stations.’’ The premise of a
virtual weigh station is that it is able to record
information about commercial vehicles in the traffic
stream in order to formulate an identification of the
vehicle with state and federal motor carrier databases.
Based on this data, the virtual weigh station can flag
vehicles which represent a risk to other vehicles on the
road, due to items such as hours of service violations,
improper vehicle registration, etc. The virtual weigh
station is also able to utilize WIM scales to capture
weight information about vehicles on the mainline, and
record the information of any vehicle in violation of
weight restrictions for follow-up by proper authorities
(208). While traditional static weight stations are able
to accomplish most of these tasks, the automated
nature of a Virtual Weigh Station and its reliance on
WIM scales makes it significantly easier to deploy and
results in substantially fewer staffing, maintenance, and
equipment costs. Figure 16.5 shows an example of the
automated data that is collected for each truck. In this
example, the most recent weighed truck was reported to
exceed the legal weight limit of 80,000 pounds by
approximately 8,500 pounds.

Virtual weigh stations can be employed without fixed
scale weight facilities, or can supplement these sites to
increase their effectiveness. The flexibility of virtual
weigh station placements and configurations makes
them suitable for capturing commercial vehicle data,
and for identifying violators, in areas where it is not
feasible to construct static weight facilities, or provide
continuous mobile enforcement. As such, it is recom-
mended that the Indiana DOT conduct a comprehen-
sive study to identify urban and secondary road sitesFigure 16.2 WIM scale (with side view) on I-65 at Merrillville.
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with high levels of motor carriers and/or high levels of
pavement damage from commercial motor vehicles,
and determine the suitability of incorporating virtual
weigh stations at these locations. Finally, it is recom-
mended that the same sites on Interstate routes which
are recommended to install or continue the use of WIM
scales also incorporate the use of virtual weigh station
elements into their enforcement procedures.

A number of different protocols are currently in use
for serving the software-side needs of WIM and virtual
weigh stations. As previously discussed, PrePass
technology can be used to ensure that ‘‘trusted’’
commercial vehicles are able to minimize the total
delay spent at weight and inspection stations (209).
PrePass motor carriers are registered with federal and
individual state transportation agencies; each PrePass-
equipped vehicle contains a transponder with auditory

and visual components. When a truck approaches a
PrePass-enabled station, the transponder transmits the
vehicle information to an enforcement officer at the
weigh station in order to conduct an automated check
of the vehicle’s credentials. A signal is then sent back to
the vehicle transponder, authorizing the driver to
bypass the station, or pull off the main line if problems
are detected (187). PrePass is currently in use at all
seven operational Indiana static weight facilities, and it
is recommended that its use be continued and expanded
as additional weigh stations are constructed.

It is currently estimated that, on average, approxi-
mately 30% of commercial vehicles that pass through
PrePass-enabled weigh stations are equipped with
PrePass transponders (210). Conversely, this means
that 70% of commercial vehicles (or more, in the case of
non-PrePass stations) must currently still be screened

Figure 16.3 Overview of WIM scale scales and speed loops (I-65 @ Merrillville).

Figure 16.4 Comparison of WIM and static weigh station measurements. Data provided by INDOT (200).
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by enforcement officers with conventional methods.
The implementation of virtual weigh stations and WIM
scales can provide a great deal of information to
enforcement officers regarding the characteristics of
these non-equipped vehicles; however, in addition to
the physical WIM, Virtual Weigh Station, and PrePass
infrastructure, consideration must be given to the
software components which reliably record, verify,
and catalog commercial vehicle data. 360SmartView is
an example of such a system that is currently being
evaluated by INDOT (209). 360SmartView is essen-
tially represents the backend component that takes
information transmitted through WIMs, license plate
readers, and other Virtual Weigh Station technology,
and reconciles it with state and federal motor carrier
databases to formulate a comprehensive identification
of each vehicle, along with any safety and/or operation
deficiencies that vehicle may possess. Using this
comprehensive vehicle identification, motor carrier
inspectors can decide whether or not to stop the vehicle
for additional weighing and inspection, or whether it
can return to the mainline. This results in a greater
number of total vehicles able to be inspected, and will
reduce the need for additional staffing in the future. It is
recommended that 360SmartView, or a similarly-
featured program, be implemented at all static weigh
stations equipped with advanced WIM and virtual
weigh station components on a trial period, and that an
in-depth study be performed to assess its long-term cost
effectiveness.

16.2 Staffing

Figure 16.6 presents a distribution of the overweight
truck violations in Indiana, with the late night
violations presumably being administered by mobile
commercial vehicle enforcement troopers. Based on this
figure, it is evident that a large number of overweight

trucks travel during the late night and early morning
hours, most likely in an effort to avoid the hours of
weigh stations staffing in Indiana. To combat this
problem, one of two different policies is recommended
for implementation:

N Transition from 16-hour weigh station shifts to around-

the-clock shifts at weigh stations. This would raise the

annual cost for motor carrier inspectors to $12.9 million,

although substantial cost savings could be realized if the

current group of motor carrier inspectors is scheduled for

longer or more frequent shifts instead, if hiring new

inspectors.

N Maintain the current 16-hour shifts at weigh stations but

implement a randomized scheduling process for the

individual shifts. If truck drivers cannot accurately

predict the times and locations when weigh stations will

not be staffed, they will be unable to continue a

systematic policy of moving overweight loads. While

the logistics of this policy are unknown (e.g., a certain

amount of confidentiality would be required amongst

motor carrier inspectors and administrators to ensure

that the scheduling process is not known to trucking

operators), it is not expected to lead to a significant

increase in staffing costs.

Note that these staffing recommendations are made
on the basis of INDOT’s current network of weight
enforcement facilities only. It is entirely feasible that
with the expanded use of WIMs and Virtual Weigh
Stations, such drastic staffing changes need not be
made, particularly if such automated facilities allows
officials to develop a targeted plan for adjusting staffing
hours at individual sites based on daily distributions of
weight violators.

Figure 16.7 also shows a sampling of overweight
commercial vehicles on the eastbound I-80/94 corridor
in Indiana, from January to March of 2002. This data
was collected by WIM scales along the corridor, and
provides information which can be useful in further

Figure 16.5 Example data collection at a virtual weigh station.
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refining the staffing recommendations contained within
this report. Regardless of the decisions made for virtual
weigh station construction, it is recommended that
similar WIM data be collected from existing scales for

all routes in the state that contain static weigh facilities,
and that this data be reviewed periodically to ensure
that staffing patterns are optimally fulfilling the needs
and travel patterns of overweight vehicles.

Figure 16.7 Overweight commercial vehicle counts from WIM scales, I-80/94 corridor, January–March 2002.

Figure 16.6 Distribution of overweight truck violations by time of day and day of the month in Indiana (211).
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16.3 Mobile Enforcement

With respect to the deployment of commercial vehicle
enforcement officers across the state, there are several
recommendations that can be made to enhance their
effectiveness. The first recommendation is to review the
allocation of officers across the various districts, and
assess whether there is an imbalance between manpower
and need in any locations. In a previous section, it was
discussed that over the past decade, the patrol hours for
law enforcement have slightly increased while the
number of trucks weighed and measured has substan-
tially decreased. While this may be in large part due to
staffing reductions at the static weigh stations, it is
prudent to review the current efforts and placement of
mobile law enforcement officers as well, and reallocate
them to the highway corridors with the greatest volumes
of truck traffic or highest historical rates of weight
violation. Furthermore, a thorough audit should be
conducted within the division to identify the various
duties that these officers perform on a daily basis, in
order to ensure that their time spent on patrol for
weight, length, and safety violations is maximized.

A second recommendation relates to the construction
of new static weigh stations around the state. Until these
stations become usable, it is recommended that the
commercial vehicle enforcement officer pool be tempora-
rily increased, in order to accommodate the additional
patrols that are needed to ensure thorough and complete
enforcement of the state’s commercial vehicle regulations.
Once the new weigh stations are open, this force can be
gradually reduced, although it should not be reverted
exactly back to current levels, given the continued
expectation of growth in commercial truck traffic on
Indiana highways. A detailed forecasting study of these
growth patterns, along with the most effective annual
miles of coverage for individual officers, should supple-
ment this report in order to provide a more precise
estimate of mobile enforcement demand.

16.4 Discussions

16.4.1 Truck Inspections

As previously discussed, in addition to duties pertain-
ing to weight enforcement, commercial vehicle enforce-
ment officers and motor carrier inspectors are responsible
for inspecting commercial vehicles for length and safety
violations, in order to reduce the number of fatal and
injury crashes on the highways (both those between
commercial and passenger vehicles, and those involving
commercial vehicles only). This section briefly discusses
recommendations for a follow-up study of truck inspec-
tion process, and the possibility of incorporating weight
enforcement with current inspection procedures.

16.4.2 Inspection Buildings

Currently, six of the seven functioning static weigh
stations have an enclosed inspection building. These

buildings, which are typically located immediately
adjacent to static scales, provide a controlled environ-
ment in which safety and length inspections can be
professionally and reliably conducted. Without these
structures, motor carrier inspectors and commercial
vehicle enforcement officers are at the mercy of the
elements when conducting vehicle inspections; this
could severely reduce their capacity to efficiently
perform their duties. It is recommended that a review
be carried out of all of the current inspection buildings
around the state, and that new buildings should be
constructed at the stations that lack such shelter, for an
estimated cost of $300,000 each. Existing structures
should be rehabilitated as needed.

16.4.3 Federal Funding

The Indiana Commercial Motor Vehicle Enforcement
Division receives the majority of its funding for vehicle
safety inspections from the Federal Motor Carrier Safety
Administration (FMCSA), through its Motor Carrier
Safety Assistance Program (MCSAP). The principal goal
of MCSAP is to reduce crashes, fatalities, and injuries
from commercial motor vehicles by consistently and
effectively enforcing FMCSA-developed safety regula-
tions. By investing money in various safety and inspection
programs that are carried out by state police and
transportation agencies, the FMCSA takes a proactive
approach in reducing the number of dangerous drivers
and commercial vehicles on the nation’s highways (213).
In 2008, the last year for which data is available, the
state of Indiana received approximately $5.7 million
from MCSAP in order to implement various safety and
inspection programs, including the inspections carried
out by the Commercial Vehicle Enforcement Division
(212).

16.4.4 Tie-in with Overweight Trucks

Unfortunately, there are currently no federal pro-
grams which explicitly provide funding for implement-
ing programs to enforce weight regulations at the state
level. However, it is recommended that INDOT and
the Indiana State Police investigate the feasibility of
incorporating weight measurement into the safety
inspection process prescribed by the FMCSA. Such a
program would allow Indiana to achieve a substantially
higher rate of compliance from overweight vehicles, not
only because more trucks would be weighed, but also
because more motor carrier inspectors and state
troopers could be hired with the combined state and
federal funding.

16.4.5 Correlation between Safety and Weight Violations

It is also recommended that INDOT investigate the
feasibility of funding a study to explore the relationship
between overweight commercial vehicles and safety
violations. Anecdotal evidence seems to suggest that
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trucks found in violation of weight regulations at any
given time, are more likely to have a history of prior
weight violations, and more importantly, safety-related
issues; however, little or no research has been done to
verify and quantify this hypothesis at various areas of the
country. Any evidence of a relationship between excess
weight or weight violations and safety could be used to
better identify specific groups of commercial vehicles for
focus during compliance checking, and to petition the
FMCSA for increased funding to implement the
strategy.

This is an issue that the FMCSA is very interested in
supporting, as evidenced by the recent announcement
of a cooperative research opportunity as part of the
Specialized Heavy Vehicle Initiative (SHVI) which aims
to address this issue (214).

16.5 Possible Future Directions in Truck Monitoring/
Inspections

The Federal Highway Administration (FHWA) and
Federal Motor Carrier Safety Administration (FMCSA)
have joined together in partnership to support the Smart
Roadside Initiative (SRI) in a bid to help address the
growing issues associated with truck weight and size
enforcement. SRI was designed, in part, to extend truck
inspection capabilities away from the traditional fixed site
environment to the roadside. As stated in FHWA
literature, the vision for SRI is one in which commercial
vehicles, motor carriers, enforcement resources, highway
facilities, intermodal facilities, and toll facilities collect
data for their own purposes and share the data seamlessly
in order to improve motor carrier safety, operational
efficiency, and freight mobility. It is envisaged that this
vision is achievable using interoperable technology and
information sharing between in-vehicle, on-the-road, and
freight facility systems (215).

In augmenting existing truck inspections with tech-
nology, it is expected that the following benefits will be
realized: reduced infrastructure damage caused by over-
loading; increased safety in highway operations; reduced
overall highway-based vehicle emissions; reduced trans-
port costs and enhanced global competitiveness; and
substantially decreased time between inspections.

The key elements of SRI include the development,
testing, and deployment of advanced technologies that
accurately measure commercial vehicles while they are
in motion; determine a motor carrier’s or commercial
vehicle’s compliance with Federal and State size and
weight, safety, and credentialing regulations; and target
enforcement at noncompliant/high-risk motor carriers
and commercial vehicles. Two key components of these
SRI elements are wireless roadside inspections and
virtual weigh stations. The wireless roadside inspection
increases the frequency of roadside safety inspections
by using on-board systems and roadside and commu-
nication technologies, and virtual weigh stations
increase the frequency of roadside size and weight
measurements through the expanded monitoring of
bypass, secondary, remote, and urban routes and

targeting of enforcement action on high-risk carriers
and vehicles. Depending on their configuration, virtual
weigh stations also have the potential to increase the
frequency with which a motor carrier’s/commercial
vehicle’s compliance with Federal and State safety and
credential regulations is verified (191).

FHWA and Cambridge Systematics interviewed
stakeholders from nine states that are at the forefront
of the deployment of roadside enforcement systems. Site
visits were conducted in four of these states. During the
course of these interviews and visits, several standard
applications of roadside technologies were identified.
These standard deployments include: Traffic monitor-
ing WIM systems; Mobile screening at WIM sites;
Virtual weigh stations; Fixed site-based mainline weight
screening; and Ramp (not mainline) WIM systems.

Despite the potential of advanced technologies to
dramatically improve the effectiveness and efficiency of
roadside enforcement operations, a number of chal-
lenges commonly confront states that attempt to deploy
these systems. These challenges include cost; manpower
requirements; interagency cooperation; data issues;
technology performance; funding; and lack of stan-
dards/architecture. A number of states have employed
certain strategies to successfully overcome these chal-
lenges. Also, there exists program support that could
potentially be offered by FHWA to help states
overcome these challenges. These are all detailed in a
recent report on a research carried out by Cambridge
Systematics for the FHWA (191).

Also, the state of Indiana could sponsor, on a 3–4
year cycle, the relevant personnel at INDOT, INDOR,
and/or the state police, to attend relevant FHWA-
sponsored courses implemented by the National
Highway Institute, such as ‘‘Principles of Effective
Commercial Motor Vehicle (CMV) Size and Weight
Enforcement.’’ This 2-day course provides advanced,
in-depth, understanding of federal motor vehicle size
and weight regulations and the importance of vehicle
size and weight enforcement programs at the state level.
The course targets transportation professionals that
oversee the preservation of federal and state highway
assets through annual vehicle size and weight (VSW)
enforcement planning and federal certification. The
course provides techniques and strategies designed for
those individuals working to implement VSW enforce-
ment programs. The cost of the course is $400.

PART IV. APPENDIX A. FHWA VEHICLE
CLASSES WITH DEFINITIONS

1. Motorcycles (Optional): All two or three-wheeled motor-
ized vehicles. Typical vehicles in this category have saddle
type seats and are steered by handlebars rather than
steering wheels. This category includes motorcycles,
motor scooters, mopeds, motor-powered bicycles, and
three-wheel motorcycles. This vehicle type may be
reported at the option of the State.

2. Passenger Cars: All sedans, coupes, and station wagons
manufactured primarily for the purpose of carrying
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passengers and including those passenger cars pulling
recreational or other light trailers.

3. Other Two-Axle, Four-Tire Single Unit Vehicles: All two-
axle, four-tire, vehicles, other than passenger cars.
Included in this classification are pickups, panels, vans,
and other vehicles such as campers, motor homes,
ambulances, hearses, carryalls, and minibuses. Other
two-axle, four-tire single-unit vehicles pulling recrea-
tional or other light trailers are included in this
classification. Because automatic vehicle classifiers have
difficulty distinguishing class 3 from class 2, these two
classes may be combined into class 2.

4. Buses: All vehicles manufactured as traditional passenger-
carrying buses with two axles and six tires or three or more
axles. This category includes only traditional buses
(including school buses) functioning as passenger-carrying
vehicles. Modified buses should be considered to be a truck
and should be appropriately classified. NOTE: In reporting
information on trucks the following criteria should be used:

a. Truck tractor units traveling without a trailer will be
considered single-unit trucks.

b. A truck tractor unit pulling other such units in a
"saddle mount" configuration will be considered one
single-unit truck and will be defined only by the axles
on the pulling unit.

c. Vehicles are defined by the number of axles in contact
with the road. Therefore, "floating" axles are counted
only when in the down position.

d. The term "trailer" includes both semi- and full trailers.

5. Two-Axle, Six-Tire, Single-Unit Trucks: All vehicles on a
single frame including trucks, camping and recreational
vehicles, motor homes, etc., with two axles and dual rear
wheels.

6. Three-Axle Single-Unit Trucks: All vehicles on a single
frame including trucks, camping and recreational vehi-
cles, motor homes, etc., with three axles.

7. Four or More Axle Single-Unit Trucks: All trucks on a
single frame with four or more axles.

8. Four or Fewer Axle Single-Trailer Trucks: All vehicles
with four or fewer axles consisting of two units, one of
which is a tractor or straight truck power unit.

9. Five-Axle Single-Trailer Trucks: All five-axle vehicles
consisting of two units, one of which is a tractor or
straight truck power unit.

10. Six or More Axle Single-Trailer Trucks: All vehicles with
six or more axles consisting of two units, one of which is
a tractor or straight truck power unit.

11. Five or fewer Axle Multi-Trailer Trucks: All vehicles with
five or fewer axles consisting of three or more units, one
of which is a tractor or straight truck power unit.

12. Six-Axle Multi-Trailer Trucks: All six-axle vehicles
consisting of three or more units, one of which is a
tractor or straight truck power unit.

13. Seven or More Axle Multi-Trailer Trucks: All vehicles
with seven or more axles consisting of three or more units,
one of which is a tractor or straight truck power unit.
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PART IV. APPENDIX B. NATIONAL HIGHWAY SYSTEM IN INDIANA

Figure IV.B.1 Indiana’s National Highway System.
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PART IV. APPENDIX C. INDIANA STATE EMPLOYEE PAY MATRICES

Figure IV.C.1 Indiana state employee pay matrices.
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PART IV. APPENDIX D. INDIANA STATE POLICE EMPLOYMENT STATISTICS

Figure IV.D.1 Total civilian and enforcement employment. (Source: (182).)

Figure IV.D.2 Number of Indiana State Police officers by rank. (Source: (182).)
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Figure IV.D.3 General Headquarters (GHQ) manpower allocation. (Source: (182).)
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Figure IV.D.4 District Traffic Enforcement manpower allocation. (Source: (216).)

Figure IV.D.5 Average years of service for Indiana State Troopers. (Source: (217).)
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PART IV. APPENDIX E. MAP OF TRAFFIC ENFORCEMENT DISTRICTS IN INDIANA

Figure IV.E.1 Map of traffic enforcement districts in Indiana.
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PART IV. APPENDIX F. INDIANA STATE ENFORCEMENT CERTIFICATION (SOURCE: FHWA)

Figure IV.F.1 Indiana State Enforcement Certification 2009.
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Figure IV.F.1 Continued.
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Figure IV.F.2 Indiana State Enforcement Certification 2010.
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Figure IV.F.2 Continued.
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Figure IV.F.3 Indiana State Enforcement Certification 2011.
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Figure IV.F.3 Continued.
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Figure IV.F.3 Continued.
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PART V. REVENUE ANALYSIS

17. INTRODUCTION

It is important for a state to have knowledge of how
much revenue can be generated from a truck permit
scheme. Two levels of aggregation were used for the
analysis. First a simple trend analysis was carried out to
predict the revenue expected from truck permitting if
the current permit rates and permit request volumes
follow the trend they have been following over the past
decade.

17.1 Aggregate Revenue

Figure 17.1 presents the cumulative monthly revenue
streams for Indiana in 2008 and the first part of 2009, from
the issuance of overweight and oversize permits. From the
issuance of overweight and oversize permits, the figure
shows that in 2008, just over $14 million was collected. The

source data is from the Indiana Department of Revenue.
The trends for 2009 suggest that a slightly lower amount
will be obtained. From a rough extrapolation of the 2009
data, it seems that the state will collect approximately $12
million by the end of 2009. The difference between 2008
and 2009 could be attributed to the recessive state of the
economy in the latter year.

Table 17.1 and Figure 17.2 present the yearly rev-
enue streams from extra-legal truck operations in
Indiana from Year 2002 to 2006 and part of 2007.
The source data is from the Indiana Department of
Revenue. The figure shows that the annual amount
collected is approximately $12 million.

The next step would be to ascertain whether this
amount covers the sum of the pavement and bridge
damage cost and the expenditure incurred in the
administration of the permitting process. While the
case study in a subsequent chapter provides a
methodology for answering this issue for a hypothetical
trucker, the analysis could be extended to the entire
state in a future research study.

Figure 17.1 Cumulative monthly revenue streams (in $millions) from overweight/oversize truck operations in Indiana, years 2008
and 2009 (partial).

TABLE 17.1
Yearly Revenue Streams from OSW Truck Operations in Indiana, 2002–2009

2002 2003 2004 2005 2006 2007 2008 2009

January $1,258,036 $1,162,141 $976,927 $949,931 $1,016,483 $1,142,243 $1,282,549 $1,013,324

February $695,353 $578,608 $687,268 $1,100,233 $1,225,636 $461,664 $1,189,449 $920,415

March $677,994 $788,729 $861,011 $917,367 $949,984 $763,568 $994,771 $1,017,590

April $1,091,486 $1,104,585 $1,164,910 $907,877 $834,369 $660,230 $1,435,513 $1,191,024

May $1,199,505 $760,533 $635,277 $1,083,217 $1,556,480 $819,032 $1,116,064 $941,679

June $834,912 $755,190 $1,184,574 $951,632 $963,147 $565,541 $1,180,131 $1,063,284

July $1,319,582 $1,438,807 $1,330,948 $1,071,073 $1,512,325 $750,370 $1,391,342 $1,218,774

August $764,280 $527,309 $1,033,130 $1,002,639 $903,982 $720,737 $1,128,387 $991,070

September $643,471 $1,040,805 $588,779 $1,379,288 $963,212 $903,312 $1,163,554 $988,285

October $1,443,616 $1,156,842 $1,406,763 $1,099,095 $819,670 $849,997 $1,485,650 $1,200,840

November $882,074 $852,140 $986,319 $1,037,379 $1,172,514 $1,077,313 $935,437 $827,099

December $838,297 $972,978 $834,219 $865,932 $1,123,311 $973,535 $975,999 $978,758

Total $11,650,607 $11,140,669 $11,692,130 $12,367,669 $13,043,118 $9,689,548 $14,280,855 $11,373,384
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18. PERMITTING OPTIONS

18.1 Single-Trip Permit versus Annual Blanket Permits

Permitting options may be examined from the
perspective of the spread of time over which the
infrastructure use is to be made. Often the choice is
between charging for a single trip or charging a blanket
fee to cover use over an extended period of time such as
one year. Regarding the issue of revenue neutrality:
highway agencies that have switched from a single-trip
permit system to an annual permit system report that
they benefited from cost savings due to reduced
monitoring efforts of each single trip but lost significant
revenue overall (218).

Specifically, in the late eighties and early nineties, a
number of highway agencies switched from single-trip
permit systems to annual blanket flat fee permit
systems. It is reported that these agencies benefited
from enhanced convenience (and as previously noted,
monitoring cost savings) due to reduction in the efforts
towards truck monitoring. However, they lost signifi-
cant revenue overall due to the fact that heavy vehicle
operators had no limit to the number of trips they could
make in one year on an annual permit (218). It was also
discovered that many trucking companies, under the
blanket fee system, tended to consolidate their over-
weight operations from many vehicles that on occasion
would obtain a single-trip overweight permit, to a few
vehicles with annual overweight permits that were
dedicated to handle as many of a company’s overweight
movements as possible in order to maximize the
investment made in permit purchases. Clearly, such
practices were favorable to the truckers but unfavorable
to the revenue generation efforts of the highway
agencies, particularly considering the additional wear
and tear caused by these overweight trucks, and the fact
that maintenance of further deteriorated infrastructures
requires additional funding. Findings from the Moffett
and Whitford survey (218) of commercial vehicle
operators showed that officials in states having annual
permits complained that their state could not ade-
quately deal with added road and bridge damage done
by overweight trucks, a sentiment that echoed a
previous study in Texas (219).

As such, highway agencies interested in annual
permitting sought (and still seek) to establish fee levels
that are ‘‘revenue neutral’’ in other words, fee levels that
would not jeopardize the amounts of revenue generated in
comparison to the single-trip permit systems. However, in
the case of annual permits, maintaining revenue neutrality
in an agency’s fee structure may require significant and
regular monitoring of the overweight truck movements
(number of trips, weights, and distance traveled) so that
the permit fee amounts can be updated as needed. Thus a
strong driving force remains for the practice of single-trip
permit structures, particularly for highway agencies
unwilling or unable to undertake the extra monitoring
efforts to ensure revenue neutrality.

From the case studies developed in Khurshid et al.
(220) for Indiana, it was observed that at states with a
blanket annual permit, the permit fee is very low
compared to the benefits, and cannot be realistically
expected to generate adequate revenue in the long term.
It is not certain whether the agencies at these states are
unwilling or unable (for reasons that may include
political considerations) to increase these fees to more
realistic levels. In this regard, it was also observed that
for the hypothetical trucker (having a fleet of a certain
distribution), relatively little total annual permit expen-
diture is incurred if the trucker operates at states that
have a blanket annual permit; on the other hand, the
trucker incurs relatively high expenditure at states that
lack a blanket permit, that is, states in which the
annualized trucker expenditure is calculated as an
accumulated sum of multiple single-trip permit fees.
This result suggests that adoption of an annual blanket
fee may be unfavorable from the perspective of the
agency’s revenue generation. This is consistent not only
with the findings of the Texas DOT but also with the
admonitions of Moffett and Whitford (218). However,
the opportunity exists for INDOT and INDOR to issue
special blanket permits to ‘‘favored’’ clients. These
include industries and truckers who undertake a large
number of OW trips and for whom seeking permits for
each trip would be time consuming, laborious, and
disruptive to their operations. It is the recommendation
of this report that the state can deal with such truckers
on a case-by-case basis.

Figure 17.2 Annual revenue from overweight and oversize truck permits 2002–2009.
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18.2 Weight-Distance Fee Concept—The State of
Practice

Permitting options may also be examined from the
perspective of what is being charged. In a recent SPR
study, Khurshid et al. (220) determined that with the
exception of Illinois, and to some extent, Indiana and
Ohio, no Midwest state has adopted explicitly the
weight-distance concept as a basis for the permit fee
structure for its overweight or oversize trucks. It is
noteworthy to mention that the state of Oregon
(outside the Midwest region) is the most well-known
leader in implementing this policy explicitly for all
commercial vehicles (overweight and oversize trucks
included) and in monitoring compliance. In general, the
trucking industry has voiced opposition to weight-
distance taxation. However, as reported by Moffett and
Whitford in 1994 (218), trucking companies that deal
regularly with overweight trucks were significantly less
opposed to weight-distance taxation compared to those
who regularly deal with legal weight trucks. It is not
certain whether these stakeholders hold such perspec-
tives at the current time.

As indicated in the preceding paragraph, the
practice of weight-distance fees has existed at some
states even if only implicitly. At certain states
(Indiana, Ohio, and Illinois), the fees charged for
overweight vehicles is different for different weight
groups and distances traveled: for a given weight
group, a higher fee is charged for a greater distance;
and for a given distance, a higher fee is charged for a
greater weight. Clearly, at these states, the overweight
fee structure shows significant resemblance to the
weight-distance concept of permitting practiced in
Oregon. This probably explains the 1994 Moffett and
Whitford observation (218) (that companies that deal
regularly with overweight trucks were significantly less
opposed to weight-distance taxation): for such truck
operators, such taxation schemes are similar to the
status quo of their fee paying structures because
weight-distance taxation yields a form of permit fee

structure that is similar to the fee structure to which
they are accustomed.

19. OTHER REVENUE-RELATED ISSUES

19.1 Exceptions to OSW Regulations in Indiana

Figure 19.1 presents a list of Indiana permits and
fees. The amount of revenue can be generally higher
when fewer exceptions are made to OSW regulations.
In Indiana, there are a number of exemptions from
oversize/overweight permits (221). When traveling on
any road other than an Interstate highway, certain
vehicles are exempt from the permitting requirements.
They include vehicles engaged in the construction of
highways, when the movement of the vehicle is confined
to highways, roads, or sections that are under
construction and not yet open to the public. The only
exception to this would be if the authority having
jurisdiction over the construction of a public highway
gives notice that a permit is needed. Another exception
is machinery or equipment used in highway construc-
tion or maintenance by the Indiana Department of
Transportation, or by Indiana counties or municipa-
lities. Also, implements of agriculture when used during
farming operations or when so constructed that the
implements can be moved without material damage to
highways. Other exemptions are the width or height of
a farm vehicle loaded with a farm product (this includes
a truck hauling unprocessed tobacco leaf) and fire-
fighting apparatus owned or operated by a political
subdivision or volunteer fire company. Furthermore,
the movement of a disabled vehicle or combination of
vehicles for a distance that does not exceed fifty (50)
highway miles by a registered recovery vehicle or by a
vehicle described in The Motor Carrier Services
Division Handbook of 2008, is exempt from the
dimension and weight limits under this article. The
source of this information is the Oversize-Overweight
Vehicle Permitting Handbook, Permit Unit, published
by the Motor Carrier Services Division of the Indiana
Department of Revenue (221).
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PART VI. SUMMARY AND
CONCLUDING REMARKS

20. SUMMARY

As discussed in the introduction to this report, it is
important that INDOT continues to regulate and
monitor overweight vehicle operations on Indiana’s
highways. This admonition is based on the hypothesis
that overweight vehicles continue to inflict significant

damage to highway pavement and bridge infrastructure
in addition to the safety or mobility hazard they pose to
other motor operators, pedestrians, and the general
public. In addressing this hypothesis among other
objectives, this study focused on the damage costs
only, and excludes the safety and congestion conse-
quences of overweight vehicle operations.

The study developed a framework in order to establish
the unit costs of infrastructure (pavement or bridge)
damage by relating overweight permit fees to infrastruc-
ture damage so that heavy vehicles pay their fair share of

Figure 19.1 List of Indiana permits and fees.
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costs. There were two key aspects of the framework: one
aspect addressed the cost of providing the infrastructure
and the other aspect addressed the extent of the
infrastructure use over its life cycle. A synthesis of these
two aspects yielded the cost per usage, in other words, the
unit (that is, the per-user) cost of infrastructure use. The
life-cycle cost of the infrastructure reconstruction, reha-
bilitation, and maintenance was modeled as a function of
its user demand (vehicle frequency and/or loading),
among other explanatory factors. From this model, the
unit cost associated with the infrastructure upkeep due to
user damage was established. This was done for each
family of the infrastructure in question.

The costs of enforcement were also established in the
study. These include personnel costs and other costs
incurred by the Indiana State Police (ISP) associated
with enforcement of the overweight permitting process
involving weighing tasks.

Also in this study, the adequacy of revenue collected
under the current permitting structure was carried out
not for the entire highway system collectively but for
individual vehicle classes and weight groups. For the
former, the study report also presents the annual
revenue streams yielded from the permits issued for
overweight trucking operations in Indiana. For the
latter, the established per-user cost associated with the
infrastructure upkeep due to user damage was com-
pared with the existing permit fee (unit revenue)
collected from each overweight user. The study also
discussed the pros and cons of INDOT establishing
permit fees on the basis of axle weight as opposed to
gross vehicle weight.

21. CONCLUSIONS

21.1 Estimation of Pavement Damage Cost due to OW
Vehicle Operations

The literature review confirmed that very few studies
adopted a truly comprehensive approach for marginal
pavement damage cost estimation on the basis of
appropriate input considerations such as practical
maintenance, rehabilitation and reconstruction sche-
dules and treatments, use of appropriate data on truck
weights, treatment cost and performance, traffic
volumes and trends, separation of strength- and
capacity-driven expenditure, use of an appropriate data
horizon period, road-use measure, and pavement rest
period. On the basis of the identified gaps in the existing
practices of pavement damage cost estimation, this
study developed a framework for estimating the
pavement damage cost. In applying the developed
framework to estimate the cost of pavement damage for
different families and ages, the study showed that
pavement damage cost is influenced significantly by
pavement class: the marginal pavement damage costs
were found to range from $0.006 per ESAL-mile for
Interstate highways to $0.218 per ESAL-mile for the
non-national highway system.

The results also showed that non-consideration of
reconstruction costs and/or routine maintenance costs

results in approximately 80% underestimation of the
actual marginal costs of pavement damage. Furthermore,
the analysis showed that the impractical approach of
considering only rehabilitation treatments applied at fixed
intervals (a failing associated with a significant number of
past studies) leads to as much as 86% underestimation of
the actual marginal cost of pavement damage.
Additionally, the results suggest that non-consideration
of non-truck traffic has an insignificant impact on
marginal pavement damage cost estimates; therefore, it
is concluded that it is appropriate to exclude automobiles
from pavement damage cost analysis.

The study conducted a sensitivity analysis of the
pavement damage cost with respect to a number of
input factors for the analysis: incorrect estimation of
the rest period or the rehabilitation treatment service
life can lead to significantly different estimates of the
marginal cost of pavement damage; and the estimates
were found to be more sensitive to the specified rest
period compared to the rehabilitation treatment service
lives. An assessment of the impact of inaccuracy in the
pavement reconstruction and rehabilitation treatment
costs revealed that such inaccuracies can cause some
variations in the marginal pavement damage cost
estimates, albeit to a relatively minor degree compared
to the other factors.

21.2 Estimation of Bridge Damage Cost due to OW
Vehicle Operations

A truck is considered to be overweight when it has a
GVW above the legal limit of 80,000 lbs; however, the
damage it causes is a function of its GVW, axle spacing
and number of axles. As such, the FHWA vehicle classes
were correlated to AASHTO’s vehicle classes based on
the modified equivalent vehicle (MEV) model that was
developed in this study; and the bridge life-cycle cost was
estimated for each bridge family. The bridge damage
cost due to overweight trucks was estimated using the
incremental cost methodology. This methodology allo-
cated cost of bridge damage to all of the vehicle classes
based on the vehicle configurations and their average
frequency of using the bridge.

The studied bridges were classified by material type as
steel, prestressed concrete, or concrete. Each bridge
material type was also sub-classified into four different
age groups: 0 to 20 years, 21 to 35 years, 36 to 55 years,
and 56 to 70 years. The bridges were considered to be
designed in a repetitive and incremental fashion based on
the highest vehicle load available. The incremental designs
were carried out and cost functions were developed on the
basis of AASHTO design vehicles. Each FHWA vehicle
weight group was classified into an equivalent AASHTO
loading using the modified equivalent vehicle model
which is based on vehicle GVW, axle loading, and axle
spacing. The results were used to incrementally assign the
bridge life-cycle damage costs to each vehicle class.

Costs were estimated over the bridge life cycle. The
practice of allocating bridge damage costs on the basis
of only one (or a narrow, unrepresentative set) of the
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individual activities for bridge upkeep (that is, bridge
replacement, deck rehabilitation, or deck replacement)
was considered unsuitable for the present study because
such approaches fail to mimic the true agency practices
of bridge upkeep, namely, a combination of main-
tenance, rehabilitation, and replacement activities over
the bridge life. Furthermore, bridges are designed for
continual replacement/reconstruction after several dec-
ades, to perpetuity; hence, using the costs of only one or
an unrepresentative few individual treatments instead
of the expenditure incurred over the entire bridge life-
cycle could result in underestimation or overestimation
of the true cost of bridge damage.

The present study pertains to overweight trucks.
Thus, the final results presented do not pertain to
weights lower than or equal to 80,000 lbs. The total cost
allocated to a vehicle class was calculated as the sum of
its cost responsibilities; and the bridge damage cost per
overweight vehicle class was computed as the cost
responsibility divided by the average volume of over-
weight trucks that typically uses the bridge. The bridge
damage cost in the present study was estimated for two
options. Option 1 considers the damage caused by the
entire load of an overweight vehicle while option 2
considers the damage caused by the overweight portion
only of an overweight vehicle. The second option is
recommended for use.

In order to issue a permit that is efficient, effective,
and equitable, considerations must be given to the full
information on a bridge (material type, age, and
dimensions) and overweight truck (GVW and axle
configurations). Three approaches (disaggregate, semi-
disaggregate, and aggregate) were considered in this
study. For the disaggregate analysis, the bridge damage
cost for each individual class of overweight truck and
for each highway class was computed. This was done
using available information on each bridge type as well
as its users (vehicles). For the semi-disaggregate
analysis, the bridge damage cost was for all overweight
vehicles combined for each highway class. For the
aggregate analysis, the bridge damage cost was esti-
mated for all overweight vehicles combined and for all
highway classes combined.

21.3 Estimation of Enforcement Costs Associated with
OW Vehicle Operations

The enforcement chapter of the report reviews
Indiana’s OW enforcement situation and presents a
number of recommendations pertaining to the static
monitoring and mobile enforcement, and truck inspec-
tions which are part of the duties of the Indiana State
Police Commercial Vehicle Enforcement Division.

With regard to static weight enforcement, a number
of additional stations were recommended for imple-
mentation across the state. The following factors were
considered in making the recommendations: proximity
to the Indiana state border; truck traffic volumes; ability
to weigh incoming trucks before their detouring to avoid
a weigh station; proximity to regions/industries which

produce a significant amount of truck traffic; and
proximity to and capacity of nearby weigh stations. On
the basis of these factors, a number of locations were
recommended for new or revitalized weigh stations at
Interstate 64, Interstate 65 at Remington and Seymour,
Interstate 69 at Warren, Evansville-Indianapolis
Extension, and Interstate 74. These recommendations
are intended to serve as a general guidance only for the
locations of these stations; the final locations should be
the subject of a separate detailed study. Recognizing
that unpermitted OW operators tend to avoid weigh
stations when they are aware of the station staffing
hours, it is recommended that one of two different
policies could be implemented: transitioning from 16-
hour weigh station shifts to around-the-clock shifts at
weigh stations; and maintaining the current 16-hour
shifts at weigh stations, but implement a randomized
scheduling process for the individual shifts.

For existing WIM stations, a review is needed of
their locations and how they fit into the overall
statewide plan of truck monitoring. For example,
installation of additional WIM stations could be
considered for installation at selected locations on the
highway network in order to assist in the monitoring of
overweight trucks. This could reduce congestion at the
static weigh stations, and could achieve savings in time
and fuel usage for the trucking operators.

Regarding the deployment of commercial vehicle
enforcement officers across the state, a number of
recommendations could be made to enhance their
effectiveness further. First, the allocation of officers
across the various districts could be reviewed, and an
assessment of any imbalance between manpower and
need at any location, could be made. Furthermore, a
thorough audit should be conducted within the division
to identify the various duties that these officers perform
on a daily basis, in order to ensure that their time spent
on patrol for weight, length, and safety violations, is
put to maximum use. For the recommended new static
weigh stations, it is recommended that until these
stations become operational, the manpower for com-
mercial vehicle enforcement be temporarily increased in
order to accommodate the additional patrols that are
needed to ensure thorough and complete enforcement
of the state’s commercial vehicle regulations. After the
new weigh stations become operational, the manpower
could be gradually reduced to a level commensurate
with the needs at that future time.

Finally, it is recommended that the Indiana State
Police investigate the possibility of more thoroughly
integrating the processes of weight and physical inspec-
tions. Because substantial federal dollars are currently
available through the FMCSA to assist in funding
troopers to conduct physical inspections of vehicles, it is
felt that incorporating weight inspections into this
process will result in a significantly higher rate of
compliance with minimal additional staffing required.
This can be facilitated in part by ensuring that all static
weigh stations within the state have functioning indoor
inspection facilities. Additionally, and perhaps in order
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to further support the case for integrating weight and
physical inspections, a study could be conducted to
investigate the relationship between overweight truck
violations, physical safety violations, and even crash
records. It is hypothesized that a positive correlation
exists between overweight operations and safety; that is,
overweight trucks may tend to have higher rates or
severities of safety violations. As such, an effort to more
aggressively identify and remove from the road, trucks
with weight or physical safety problems is expected to
also have a substantial impact on reducing the other
type of violations.

These recommendations will provide INDOT and
the Indiana State Police with a broad-level roadmap for
future commercial vehicle enforcement efforts, from
which they could perform further studies to assess
different strategies and impacts of implementing these
recommendations.

21.4 Revenues Associated with OW Vehicle Operations

The study report also presents the annual revenue
streams yielded from the permits issued for overweight
trucking operations in Indiana and reports that the
approximate amount obtained by the Indiana Depart-
ment of Revenue is approximately $12 million per year.
Obviously, this amount falls far short of what is needed
to offset the cost of pavement and bridge damage due
to overweight truck operations even without including
their direct and indirect costs of reduced safety and
mobility. A past study in Texas found that the fees paid
by overweight trucks are typically a very small fraction
of the actual damage costs they cause on the pavements
alone.

The study also discussed briefly the issue of revenue
neutrality: highway agencies that have switched from a
single-trip permit system to an annual permit system
report that they benefited from cost savings due to
reduced monitoring efforts of each single trip but lost
significant revenue overall. This result suggests that
adoption of an annual blanket fee may be unfavorable
from the perspective of revenue generation. However,
the opportunity exists for INDOT and INDOR to issue
special blanket permits to ‘‘favored’’ clients. These
include industries and truckers who undertake a large
number of OW trips and for whom seeking permits for
each trip would be time consuming, laborious, and
disruptive to their operations. It is the recommendation
of this report that the state can deal with such trucking
operators on a case-by-case basis.

22. POTENTIAL BENEFITS OF THE STUDY

It is hoped that the results of this study provides a
valuable knowledge base for INDOT as the agency moves
forward to update or streamline its overweight truck
permitting processes. The ultimate intention is to help the
state preserve its investments in highway infrastructure
without sacrificing the competitive position of the state in
attracting and retaining commercial entities and businesses

that foster the state’s economic development. Specific
potential benefits of this study are discussed below.

22.1 Equity in User Charging

It is expected that INDOT will be able to use the
study results to establish a more equitable structure for
its overweight permit fees by charging vehicles in each
class on the basis of the damage inflicted on the
infrastructure due to their axle weights.

22.2 Potential Revenue Generation

By establishing permit fee structures that are more
representative of the actual costs of infrastructure upkeep
due to heavy vehicle loading (compared to current fees),
the state of Indiana’s departments of transportation
and revenue stand to earn more direct revenues, thus
reducing the gap between revenue and damage. Studies
at other states have confirmed that the revenues earned
from overweight permits are typically a very small
fraction of the actual damage costs caused to the
highway infrastructure by overweight vehicles.

22.3 Cost Avoidance and Reduction

By establishing permit fee structures that duly
penalize excessive loads, the study results, will help
preserve pavement and bridge assets by extending their
service lives which, ultimately, will translate into lower
costs over the life-cycle of such infrastructure. This will
be a direct benefit to INDOT (through reduced need for
repairs) which would translate into indirect benefit to
users (through lower user costs due to lower frequency
of work zones), and lower user vehicle operating cost
due to superior condition of the infrastructure.

22.4 Customer Satisfaction and Public Relations

By providing permitting alternatives such as an
overweight permit fee structure that takes due cogni-
zance of the weight and the distance traveled, it is
envisaged that road users and the general public would
acknowledge and appreciate the inherent fairness in
such a fee structure. This will contribute to intangible
benefits including enhanced INDOT accountability of
the stewardship of the public highway infrastructure
reputation and improved public relations.

23. CONCLUDING REMARKS

In sum, the research provided a study product that
will assist INDOT in a variety of ways. First, by
providing a detailed methodology for attributing the
costs of pavement and bridge repair damage on the
basis of the damage occasioned by each class of heavy
vehicles, the research results will help INDOT relate
heavy vehicle permit fees to infrastructure damage
caused by excess axle weights. That way, INDOT is
provided a means for establishing an updated and
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equitable fee structure that would ensure that all heavy
vehicles pay their fair share of damage costs. Estimation
of the costs of enforcement can also help establish the
unit cost of enforcement for each highway user is
responsible. It is envisaged that an updated fee structure
based on the results of this study will help INDOT
establish reasonable fees in order to attract and retain
industries that regularly haul heavy loads, protect the
highway infrastructure from undue excess loads, and
ensure that heavy vehicles pay their fair share of costs.
In sum, the foundation is herein built for INDOT upon
which the agency can develop a balanced fee structure
that avoids impairment of economic activities without
sacrificing the longevity of the highway infrastructure.

PART VI. APPENDIX A. EXCEPTIONS TO OSW
REGULATIONS IN INDIANA (221)

There are certain exemptions from oversize/over-
weight permits. When traveling on any road other than
an Interstate highway, certain vehicles are exempt from
the permitting requirements. They include:

1. A vehicle engaged in the construction of highways,
when the movement of the vehicle is confined to
highways, roads, or sections that are under construction
and not yet open to the public. The only exception to
this would be if the authority having jurisdiction over
the construction of a public highway gives notice that a
permit is needed.

2. Machinery or equipment used in highway construction
or maintenance by the Indiana Department of
Transportation, or by Indiana counties or municipalities.

3. Implements of agriculture when used during farm-
ing operations or when so constructed that the
implements can be moved without material damage to
highways.

4. The width or height of a farm vehicle loaded with a farm
product. This includes a truck hauling unprocessed
tobacco leaf.

5. Fire-fighting apparatus owned or operated by a political
subdivision or volunteer fire company.

6. The movement of a disabled vehicle or combination of
vehicles for a distance that does not exceed fifty (50)
highway miles by a registered recovery vehicle or by a
vehicle described in MCSD (221) is exempt from the
dimension and weight limits under this article.
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PART VI. APPENDIX B. LIST OF INDIANA PERMITS AND FEES

Figure VI.B.1 List of OSOW permits and fees. (Source: (221).)
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